Cargando…
Effects of Iodine Doping on Electrical Characteristics of Solution-Processed Copper Oxide Thin-Film Transistors
In order to implement oxide semiconductor-based complementary circuits, the improvement of the electrical properties of p-type oxide semiconductors and the performance of p-type oxide TFTs is certainly required. In this study, we report the effects of iodine doping on the structural and electrical c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537329/ https://www.ncbi.nlm.nih.gov/pubmed/34683708 http://dx.doi.org/10.3390/ma14206118 |
_version_ | 1784588224462585856 |
---|---|
author | Lee, Hyeonju Zhang, Xue Kim, Bokyung Bae, Jin-Hyuk Park, Jaehoon |
author_facet | Lee, Hyeonju Zhang, Xue Kim, Bokyung Bae, Jin-Hyuk Park, Jaehoon |
author_sort | Lee, Hyeonju |
collection | PubMed |
description | In order to implement oxide semiconductor-based complementary circuits, the improvement of the electrical properties of p-type oxide semiconductors and the performance of p-type oxide TFTs is certainly required. In this study, we report the effects of iodine doping on the structural and electrical characteristics of copper oxide (CuO) semiconductor films and the TFT performance. The CuO semiconductor films were fabricated using copper(II) acetate hydrate as a precursor to solution processing, and iodine doping was performed using vapor sublimated from solid iodine. Doped iodine penetrated the CuO film through grain boundaries, thereby inducing tensile stress in the film and increasing the film’s thickness. Iodine doping contributed to the improvement of the electrical properties of the solution-processed CuO semiconductor including increases in Hall mobility and hole-carrier concentration and a decrease in electrical resistivity. The CuO TFTs exhibited a conduction channel formation by holes, that is, p-type operation characteristics, and the TFT performance improved after iodine doping. Iodine doping was also found to be effective in reducing the counterclockwise hysteresis in the transfer characteristics of CuO TFTs. These results are explained by physicochemical reactions in which iodine replaces oxygen vacancies and oxygen atoms through the formation of iodide anions in CuO. |
format | Online Article Text |
id | pubmed-8537329 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85373292021-10-24 Effects of Iodine Doping on Electrical Characteristics of Solution-Processed Copper Oxide Thin-Film Transistors Lee, Hyeonju Zhang, Xue Kim, Bokyung Bae, Jin-Hyuk Park, Jaehoon Materials (Basel) Article In order to implement oxide semiconductor-based complementary circuits, the improvement of the electrical properties of p-type oxide semiconductors and the performance of p-type oxide TFTs is certainly required. In this study, we report the effects of iodine doping on the structural and electrical characteristics of copper oxide (CuO) semiconductor films and the TFT performance. The CuO semiconductor films were fabricated using copper(II) acetate hydrate as a precursor to solution processing, and iodine doping was performed using vapor sublimated from solid iodine. Doped iodine penetrated the CuO film through grain boundaries, thereby inducing tensile stress in the film and increasing the film’s thickness. Iodine doping contributed to the improvement of the electrical properties of the solution-processed CuO semiconductor including increases in Hall mobility and hole-carrier concentration and a decrease in electrical resistivity. The CuO TFTs exhibited a conduction channel formation by holes, that is, p-type operation characteristics, and the TFT performance improved after iodine doping. Iodine doping was also found to be effective in reducing the counterclockwise hysteresis in the transfer characteristics of CuO TFTs. These results are explained by physicochemical reactions in which iodine replaces oxygen vacancies and oxygen atoms through the formation of iodide anions in CuO. MDPI 2021-10-15 /pmc/articles/PMC8537329/ /pubmed/34683708 http://dx.doi.org/10.3390/ma14206118 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lee, Hyeonju Zhang, Xue Kim, Bokyung Bae, Jin-Hyuk Park, Jaehoon Effects of Iodine Doping on Electrical Characteristics of Solution-Processed Copper Oxide Thin-Film Transistors |
title | Effects of Iodine Doping on Electrical Characteristics of Solution-Processed Copper Oxide Thin-Film Transistors |
title_full | Effects of Iodine Doping on Electrical Characteristics of Solution-Processed Copper Oxide Thin-Film Transistors |
title_fullStr | Effects of Iodine Doping on Electrical Characteristics of Solution-Processed Copper Oxide Thin-Film Transistors |
title_full_unstemmed | Effects of Iodine Doping on Electrical Characteristics of Solution-Processed Copper Oxide Thin-Film Transistors |
title_short | Effects of Iodine Doping on Electrical Characteristics of Solution-Processed Copper Oxide Thin-Film Transistors |
title_sort | effects of iodine doping on electrical characteristics of solution-processed copper oxide thin-film transistors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537329/ https://www.ncbi.nlm.nih.gov/pubmed/34683708 http://dx.doi.org/10.3390/ma14206118 |
work_keys_str_mv | AT leehyeonju effectsofiodinedopingonelectricalcharacteristicsofsolutionprocessedcopperoxidethinfilmtransistors AT zhangxue effectsofiodinedopingonelectricalcharacteristicsofsolutionprocessedcopperoxidethinfilmtransistors AT kimbokyung effectsofiodinedopingonelectricalcharacteristicsofsolutionprocessedcopperoxidethinfilmtransistors AT baejinhyuk effectsofiodinedopingonelectricalcharacteristicsofsolutionprocessedcopperoxidethinfilmtransistors AT parkjaehoon effectsofiodinedopingonelectricalcharacteristicsofsolutionprocessedcopperoxidethinfilmtransistors |