Cargando…

FosL1 Is a Novel Target of Levetiracetam for Suppressing the Microglial Inflammatory Reaction

We previously showed that the antiepileptic drug levetiracetam (LEV) inhibits microglial activation, but the mechanism remains unclear. The purpose of this study was to identify the target of LEV in microglial activity suppression. The mouse microglial BV-2 cell line, cultured in a ramified form, wa...

Descripción completa

Detalles Bibliográficos
Autores principales: Niidome, Kouji, Taniguchi, Ruri, Yamazaki, Takeshi, Tsuji, Mayumi, Itoh, Kouichi, Ishihara, Yasuhiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537483/
https://www.ncbi.nlm.nih.gov/pubmed/34681621
http://dx.doi.org/10.3390/ijms222010962
Descripción
Sumario:We previously showed that the antiepileptic drug levetiracetam (LEV) inhibits microglial activation, but the mechanism remains unclear. The purpose of this study was to identify the target of LEV in microglial activity suppression. The mouse microglial BV-2 cell line, cultured in a ramified form, was pretreated with LEV and then treated with lipopolysaccharide (LPS). A comprehensive analysis of LEV targets was performed by cap analysis gene expression sequencing using BV-2 cells, indicating the transcription factors BATF, Nrf-2, FosL1 (Fra1), MAFF, and Spic as candidates. LPS increased AP-1 and Spic transcriptional activity, and LEV only suppressed AP-1 activity. FosL1, MAFF, and Spic mRNA levels were increased by LPS, and LEV only attenuated FosL1 mRNA expression, suggesting FosL1 as an LEV target. FosL1 protein levels were increased by LPS treatment and decreased by LEV pretreatment, similar to FosL1 mRNA levels. The FosL1 siRNA clearly suppressed the expression of TNFα and IL-1β. Pilocarpine-induced status epilepticus increased hippocampus FosL1 expression, along with inflammation. LEV treatment significantly suppressed FosL1 expression. Together, LEV reduces FosL1 expression and AP-1 activity in activated microglia, thereby suppressing neuroinflammation. LEV might be a candidate for the treatment of several neurological diseases involving microglial activation.