Cargando…

Experimental Investigation of Fabricated Graphene Nanoplates/Polystyrene Nanofibrous Membrane for DCMD

In recent decades, the fabrication of composite membranes using nanoparticles has played a vital role in membrane distillation (MD) technique. It could make available membranes with superior characteristics as excellent candidates for MD technique. The most well-known obstacles regarding the MD meth...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdullah, Ahmad, Al-Qahatani, Abdulaziz, Alquraish, Mohammed, Baily, Colin, El-Mofty, Salah, El-Shazly, Ahmed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537701/
https://www.ncbi.nlm.nih.gov/pubmed/34685260
http://dx.doi.org/10.3390/polym13203499
Descripción
Sumario:In recent decades, the fabrication of composite membranes using nanoparticles has played a vital role in membrane distillation (MD) technique. It could make available membranes with superior characteristics as excellent candidates for MD technique. The most well-known obstacles regarding the MD method are the low productivity and high cost. Thus, fabricating membranes with superior properties is a significant challenge. In the current study, a composite membrane has been fabricated using 0.25, 0.5, and 0.75 weight percent (wt.%) of graphene nanoparticles (GNPs) with polystyrene (PS) as a base polymer and characterized using SEM, FTIR, and contact angle. The characterization results prove the successful fabrication using electrospinning and the validity of the fabricated membranes to be applied to direct contact membrane distillation (DCMD). In addition, a DCMD experimental setup has been designed to examine the performance of the fabricated membranes and compare the performance of blank PS with composite PS/GNPs membranes. The results show that all fabricated membranes produced an approximately similar average flux of about 10 kg/m(2) h, while the highest GNPs wt.% showed the highest salt rejection. Accordingly, this composite membrane has been examined at different operating parameters and showed stable performance. Moreover, feed temperature and the rate of flow have a positive impact on the overall performance of the DCMD.