Cargando…

Clinical Guidelines and New Molecular Targets for Cutaneous Lymphomas

Primary cutaneous lymphomas are heterogenous lymphoproliferative disorders. Some patients show rapid progression and the need for treatment of advanced disease is still unmet. The frequency of each subtype of cutaneous lymphoma varies among different ethnic groups, as do the medical systems found in...

Descripción completa

Detalles Bibliográficos
Autor principal: Sugaya, Makoto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537763/
https://www.ncbi.nlm.nih.gov/pubmed/34681738
http://dx.doi.org/10.3390/ijms222011079
Descripción
Sumario:Primary cutaneous lymphomas are heterogenous lymphoproliferative disorders. Some patients show rapid progression and the need for treatment of advanced disease is still unmet. The frequency of each subtype of cutaneous lymphoma varies among different ethnic groups, as do the medical systems found in different countries. It is important to know the differences in clinical guidelines in different areas of the world. Although current monochemotherapy with gemcitabine or pegylated liposomal doxorubicin is temporarily effective for mycosis funogides (MF) and Sézary syndrome (SS)—representative types of cutaneous lymphomas—the duration of response is usually limited. Therefore, treatment strategies targeting tumor-specific molecules have been developed. Molecular targets for MS/SS are currently CD30, CCR4, CD25, CD52, and histone deacetylases, most of which are surface molecules specifically expressed on tumor cells. As a result of advances in research techniques, different kinds of genomic alterations in MF/SS have been revealed. Molecular targets for MS/SS in the near future would be CD158k, JAK, PIK3, the mammalian target of rapamycin, and microRNAs, most of which mediate intracellular signaling pathways. Personalized therapy based on the detection of the genetic signatures of tumors and inhibition of the most suitable target molecules constitutes a future treatment strategy for MF/SS.