Cargando…
All-Dielectric Huygens’ Metasurface for Wavefront Manipulation in the Visible Region
All-dielectric Huygens’ metasurfaces have been widely used in wavefront manipulation through multipole interactions. Huygens’ metasurfaces utilize the superposition between an electric dipole and a magnetic dipole resonance to realize transmission enhancement and an accumulated 2π phase change. Bene...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537766/ https://www.ncbi.nlm.nih.gov/pubmed/34683557 http://dx.doi.org/10.3390/ma14205967 |
_version_ | 1784588340410974208 |
---|---|
author | Wu, Tiesheng Liu, Zhihui Cao, Weiping Zhang, Huixian Yang, Dan Yang, Zuning |
author_facet | Wu, Tiesheng Liu, Zhihui Cao, Weiping Zhang, Huixian Yang, Dan Yang, Zuning |
author_sort | Wu, Tiesheng |
collection | PubMed |
description | All-dielectric Huygens’ metasurfaces have been widely used in wavefront manipulation through multipole interactions. Huygens’ metasurfaces utilize the superposition between an electric dipole and a magnetic dipole resonance to realize transmission enhancement and an accumulated 2π phase change. Benefiting from this unique property, we design and numerically investigate an all-dielectric Huygens’ metasurface exhibiting high-efficiency anomalous refraction. To suppress the substrate effect, the metasurface structure is submerged in a dielectric plate. We strategically placed two elements in four short periods to form a unit cell and adjusted the spacing between the two elements to effectively inhibit the interaction between elements. At the operating wavelength of 692 nm, the obtained anomalous transmission efficiency is over 90.7% with a diffraction angle of 30.84°. The performance of the proposed structure is far superior to most of the existing phase-gradient metasurface structures in the visible region, which paves the way for designing efficient beam deflection devices. |
format | Online Article Text |
id | pubmed-8537766 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85377662021-10-24 All-Dielectric Huygens’ Metasurface for Wavefront Manipulation in the Visible Region Wu, Tiesheng Liu, Zhihui Cao, Weiping Zhang, Huixian Yang, Dan Yang, Zuning Materials (Basel) Article All-dielectric Huygens’ metasurfaces have been widely used in wavefront manipulation through multipole interactions. Huygens’ metasurfaces utilize the superposition between an electric dipole and a magnetic dipole resonance to realize transmission enhancement and an accumulated 2π phase change. Benefiting from this unique property, we design and numerically investigate an all-dielectric Huygens’ metasurface exhibiting high-efficiency anomalous refraction. To suppress the substrate effect, the metasurface structure is submerged in a dielectric plate. We strategically placed two elements in four short periods to form a unit cell and adjusted the spacing between the two elements to effectively inhibit the interaction between elements. At the operating wavelength of 692 nm, the obtained anomalous transmission efficiency is over 90.7% with a diffraction angle of 30.84°. The performance of the proposed structure is far superior to most of the existing phase-gradient metasurface structures in the visible region, which paves the way for designing efficient beam deflection devices. MDPI 2021-10-11 /pmc/articles/PMC8537766/ /pubmed/34683557 http://dx.doi.org/10.3390/ma14205967 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wu, Tiesheng Liu, Zhihui Cao, Weiping Zhang, Huixian Yang, Dan Yang, Zuning All-Dielectric Huygens’ Metasurface for Wavefront Manipulation in the Visible Region |
title | All-Dielectric Huygens’ Metasurface for Wavefront Manipulation in the Visible Region |
title_full | All-Dielectric Huygens’ Metasurface for Wavefront Manipulation in the Visible Region |
title_fullStr | All-Dielectric Huygens’ Metasurface for Wavefront Manipulation in the Visible Region |
title_full_unstemmed | All-Dielectric Huygens’ Metasurface for Wavefront Manipulation in the Visible Region |
title_short | All-Dielectric Huygens’ Metasurface for Wavefront Manipulation in the Visible Region |
title_sort | all-dielectric huygens’ metasurface for wavefront manipulation in the visible region |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537766/ https://www.ncbi.nlm.nih.gov/pubmed/34683557 http://dx.doi.org/10.3390/ma14205967 |
work_keys_str_mv | AT wutiesheng alldielectrichuygensmetasurfaceforwavefrontmanipulationinthevisibleregion AT liuzhihui alldielectrichuygensmetasurfaceforwavefrontmanipulationinthevisibleregion AT caoweiping alldielectrichuygensmetasurfaceforwavefrontmanipulationinthevisibleregion AT zhanghuixian alldielectrichuygensmetasurfaceforwavefrontmanipulationinthevisibleregion AT yangdan alldielectrichuygensmetasurfaceforwavefrontmanipulationinthevisibleregion AT yangzuning alldielectrichuygensmetasurfaceforwavefrontmanipulationinthevisibleregion |