Cargando…
Potential Adjuvant Therapeutic Effect of Lactobacillus plantarum Probio-88 Postbiotics against SARS-COV-2
In response to the ongoing COVID-19 pandemic, the global effort to develop high efficacy countermeasures to control the infection are being conducted at full swing. While the efficacy of vaccines and coronavirus drugs are being tested, the microbiome approach represents an alternative pathophysiolog...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537773/ https://www.ncbi.nlm.nih.gov/pubmed/34696175 http://dx.doi.org/10.3390/vaccines9101067 |
_version_ | 1784588342060384256 |
---|---|
author | Rather, Irfan A. Choi, Sy-Bing Kamli, Majid Rasool Hakeem, Khalid Rehman Sabir, Jamal S. M. Park, Yong-Ha Hor, Yan-Yan |
author_facet | Rather, Irfan A. Choi, Sy-Bing Kamli, Majid Rasool Hakeem, Khalid Rehman Sabir, Jamal S. M. Park, Yong-Ha Hor, Yan-Yan |
author_sort | Rather, Irfan A. |
collection | PubMed |
description | In response to the ongoing COVID-19 pandemic, the global effort to develop high efficacy countermeasures to control the infection are being conducted at full swing. While the efficacy of vaccines and coronavirus drugs are being tested, the microbiome approach represents an alternative pathophysiology-based approach to prevent the severity of the infection. In the current study, we evaluated the action of a novel probiotic Lactobacillus plantarum Probio-88 against SARS-COV-2 replication and immune regulation using an in vitro and in silico study. The results showed that extract from this strain (P88-CFS) significantly inhibited the replication of SARS-COV-2 and the production of reactive oxygen species (ROS) levels. Furthermore, compared with infected cells, P88-CFS treated cells showed a significant reduction in inflammatory markers such as IFN-α, IFN-β, and IL-6. Using an in silico molecular docking approach, it was postulated that the antiviral activity of L. plantarum Probio-88 was derived from plantaricin E (PlnE) and F (PlnF). The high binding affinity and formation of hydrogen bonding indicated that the association of PlnE and PlnF on SARS-COV-2 helicase might serve as a blocker by preventing the binding of ss-RNA during the replication of the virus. In conclusion, our study substantiated that P88-CFS could be used as an integrative therapeutic approach along with vaccine to contain the spread of the highly infectious pathogen and possibly its variants. |
format | Online Article Text |
id | pubmed-8537773 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85377732021-10-24 Potential Adjuvant Therapeutic Effect of Lactobacillus plantarum Probio-88 Postbiotics against SARS-COV-2 Rather, Irfan A. Choi, Sy-Bing Kamli, Majid Rasool Hakeem, Khalid Rehman Sabir, Jamal S. M. Park, Yong-Ha Hor, Yan-Yan Vaccines (Basel) Article In response to the ongoing COVID-19 pandemic, the global effort to develop high efficacy countermeasures to control the infection are being conducted at full swing. While the efficacy of vaccines and coronavirus drugs are being tested, the microbiome approach represents an alternative pathophysiology-based approach to prevent the severity of the infection. In the current study, we evaluated the action of a novel probiotic Lactobacillus plantarum Probio-88 against SARS-COV-2 replication and immune regulation using an in vitro and in silico study. The results showed that extract from this strain (P88-CFS) significantly inhibited the replication of SARS-COV-2 and the production of reactive oxygen species (ROS) levels. Furthermore, compared with infected cells, P88-CFS treated cells showed a significant reduction in inflammatory markers such as IFN-α, IFN-β, and IL-6. Using an in silico molecular docking approach, it was postulated that the antiviral activity of L. plantarum Probio-88 was derived from plantaricin E (PlnE) and F (PlnF). The high binding affinity and formation of hydrogen bonding indicated that the association of PlnE and PlnF on SARS-COV-2 helicase might serve as a blocker by preventing the binding of ss-RNA during the replication of the virus. In conclusion, our study substantiated that P88-CFS could be used as an integrative therapeutic approach along with vaccine to contain the spread of the highly infectious pathogen and possibly its variants. MDPI 2021-09-24 /pmc/articles/PMC8537773/ /pubmed/34696175 http://dx.doi.org/10.3390/vaccines9101067 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rather, Irfan A. Choi, Sy-Bing Kamli, Majid Rasool Hakeem, Khalid Rehman Sabir, Jamal S. M. Park, Yong-Ha Hor, Yan-Yan Potential Adjuvant Therapeutic Effect of Lactobacillus plantarum Probio-88 Postbiotics against SARS-COV-2 |
title | Potential Adjuvant Therapeutic Effect of Lactobacillus plantarum Probio-88 Postbiotics against SARS-COV-2 |
title_full | Potential Adjuvant Therapeutic Effect of Lactobacillus plantarum Probio-88 Postbiotics against SARS-COV-2 |
title_fullStr | Potential Adjuvant Therapeutic Effect of Lactobacillus plantarum Probio-88 Postbiotics against SARS-COV-2 |
title_full_unstemmed | Potential Adjuvant Therapeutic Effect of Lactobacillus plantarum Probio-88 Postbiotics against SARS-COV-2 |
title_short | Potential Adjuvant Therapeutic Effect of Lactobacillus plantarum Probio-88 Postbiotics against SARS-COV-2 |
title_sort | potential adjuvant therapeutic effect of lactobacillus plantarum probio-88 postbiotics against sars-cov-2 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537773/ https://www.ncbi.nlm.nih.gov/pubmed/34696175 http://dx.doi.org/10.3390/vaccines9101067 |
work_keys_str_mv | AT ratherirfana potentialadjuvanttherapeuticeffectoflactobacillusplantarumprobio88postbioticsagainstsarscov2 AT choisybing potentialadjuvanttherapeuticeffectoflactobacillusplantarumprobio88postbioticsagainstsarscov2 AT kamlimajidrasool potentialadjuvanttherapeuticeffectoflactobacillusplantarumprobio88postbioticsagainstsarscov2 AT hakeemkhalidrehman potentialadjuvanttherapeuticeffectoflactobacillusplantarumprobio88postbioticsagainstsarscov2 AT sabirjamalsm potentialadjuvanttherapeuticeffectoflactobacillusplantarumprobio88postbioticsagainstsarscov2 AT parkyongha potentialadjuvanttherapeuticeffectoflactobacillusplantarumprobio88postbioticsagainstsarscov2 AT horyanyan potentialadjuvanttherapeuticeffectoflactobacillusplantarumprobio88postbioticsagainstsarscov2 |