Cargando…

QTL Validation and Development of SNP-Based High Throughput Molecular Markers Targeting a Genomic Region Conferring Narrow Root Cone Angle in Aerobic Rice Production Systems

Aerobic rice production (AP) provides potential solutions to the global water crisis by consuming less water than traditional permanent water culture. Narrow root cone angle (RCA), development of deeper rooting and associated genomic regions are key for AP adaptation. However, their usefulness depen...

Descripción completa

Detalles Bibliográficos
Autores principales: Vinarao, Ricky, Proud, Christopher, Snell, Peter, Fukai, Shu, Mitchell, Jaquie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537842/
https://www.ncbi.nlm.nih.gov/pubmed/34685908
http://dx.doi.org/10.3390/plants10102099
Descripción
Sumario:Aerobic rice production (AP) provides potential solutions to the global water crisis by consuming less water than traditional permanent water culture. Narrow root cone angle (RCA), development of deeper rooting and associated genomic regions are key for AP adaptation. However, their usefulness depends on validation across genetic backgrounds and development of linked markers. Using three F(2) populations derived from IRAT109, qRCA4 was shown to be effective in multiple backgrounds, explaining 9.3–17.3% of the genotypic variation and introgression of the favourable allele resulted in 11.7–15.1° narrower RCA. Novel kompetitive allele specific PCR (KASP) markers were developed targeting narrow RCA and revealed robust quality metrics. Candidate genes related with plant response to abiotic stress and root development were identified along with 178 potential donors across rice subpopulations. This study validated qRCA4’s effect in multiple genetic backgrounds further strengthening its value in rice improvement for AP adaptation. Furthermore, the development of novel KASP markers ensured the opportunity for its seamless introgression across pertinent breeding programs. This work provides the tools and opportunity to accelerate development of genotypes with narrow RCA through marker assisted selection in breeding programs targeting AP, which may ultimately contribute to more sustainable rice production where water availability is limited.