Cargando…

Body-Temperature Programmable Soft-Shape Memory Hybrid Sponges for Comfort Fitting

Porous shape memory hybrids are fabricated with different matrix (silicone) hardness and different inclusion (polycaprolactone, PCL) ratios. They are characterized to obtain their mechanical response to cyclic loads (with/without pre-straining/programming) and their shape memory performances after b...

Descripción completa

Detalles Bibliográficos
Autores principales: Naveen, Balasundaram Selvan, Naseem, Azharuddin Bin Mohamed, Ng, Catherine Jia Lin, Chan, Jun Wei, Lee, Rayner Zheng Xian, Teo, Leonard Ee Tong, Wang, Taoxi, Nripan, Mathews, Huang, Wei Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537981/
https://www.ncbi.nlm.nih.gov/pubmed/34685259
http://dx.doi.org/10.3390/polym13203501
Descripción
Sumario:Porous shape memory hybrids are fabricated with different matrix (silicone) hardness and different inclusion (polycaprolactone, PCL) ratios. They are characterized to obtain their mechanical response to cyclic loads (with/without pre-straining/programming) and their shape memory performances after body-temperature programming are investigated. These materials are lightweight due to their porous structures. Wetted hydrogels used in the fabrication process for creating pores are reusable and hence this process is eco-friendly. These porous shape memory hybrids exhibit the good shape memory effect of around 90% with higher inclusion (PCL) ratios, which is better than the solid versions reported in the literature. Hence, it is concluded that these materials have great potential to be used in, for instance, insoles and soles for comfort fitting, as demonstrated.