Cargando…

Smartphone-Based Artificial Intelligence–Assisted Prediction for Eyelid Measurements: Algorithm Development and Observational Validation Study

BACKGROUND: Margin reflex distance 1 (MRD1), margin reflex distance 2 (MRD2), and levator muscle function (LF) are crucial metrics for ptosis evaluation and management. However, manual measurements of MRD1, MRD2, and LF are time-consuming, subjective, and prone to human error. Smartphone-based artif...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Hung-Chang, Tzeng, Shin-Shi, Hsiao, Yen-Chang, Chen, Ruei-Feng, Hung, Erh-Chien, Lee, Oscar K
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538024/
https://www.ncbi.nlm.nih.gov/pubmed/34538776
http://dx.doi.org/10.2196/32444
_version_ 1784588408523325440
author Chen, Hung-Chang
Tzeng, Shin-Shi
Hsiao, Yen-Chang
Chen, Ruei-Feng
Hung, Erh-Chien
Lee, Oscar K
author_facet Chen, Hung-Chang
Tzeng, Shin-Shi
Hsiao, Yen-Chang
Chen, Ruei-Feng
Hung, Erh-Chien
Lee, Oscar K
author_sort Chen, Hung-Chang
collection PubMed
description BACKGROUND: Margin reflex distance 1 (MRD1), margin reflex distance 2 (MRD2), and levator muscle function (LF) are crucial metrics for ptosis evaluation and management. However, manual measurements of MRD1, MRD2, and LF are time-consuming, subjective, and prone to human error. Smartphone-based artificial intelligence (AI) image processing is a potential solution to overcome these limitations. OBJECTIVE: We propose the first smartphone-based AI-assisted image processing algorithm for MRD1, MRD2, and LF measurements. METHODS: This observational study included 822 eyes of 411 volunteers aged over 18 years from August 1, 2020, to April 30, 2021. Six orbital photographs (bilateral primary gaze, up-gaze, and down-gaze) were taken using a smartphone (iPhone 11 Pro Max). The gold-standard measurements and normalized eye photographs were obtained from these orbital photographs and compiled using AI-assisted software to create MRD1, MRD2, and LF models. RESULTS: The Pearson correlation coefficients between the gold-standard measurements and the predicted values obtained with the MRD1 and MRD2 models were excellent (r=0.91 and 0.88, respectively) and that obtained with the LF model was good (r=0.73). The intraclass correlation coefficient demonstrated excellent agreement between the gold-standard measurements and the values predicted by the MRD1 and MRD2 models (0.90 and 0.84, respectively), and substantial agreement with the LF model (0.69). The mean absolute errors were 0.35 mm, 0.37 mm, and 1.06 mm for the MRD1, MRD2, and LF models, respectively. The 95% limits of agreement were –0.94 to 0.94 mm for the MRD1 model, –0.92 to 1.03 mm for the MRD2 model, and –0.63 to 2.53 mm for the LF model. CONCLUSIONS: We developed the first smartphone-based AI-assisted image processing algorithm for eyelid measurements. MRD1, MRD2, and LF measures can be taken in a quick, objective, and convenient manner. Furthermore, by using a smartphone, the examiner can check these measurements anywhere and at any time, which facilitates data collection.
format Online
Article
Text
id pubmed-8538024
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-85380242021-11-09 Smartphone-Based Artificial Intelligence–Assisted Prediction for Eyelid Measurements: Algorithm Development and Observational Validation Study Chen, Hung-Chang Tzeng, Shin-Shi Hsiao, Yen-Chang Chen, Ruei-Feng Hung, Erh-Chien Lee, Oscar K JMIR Mhealth Uhealth Original Paper BACKGROUND: Margin reflex distance 1 (MRD1), margin reflex distance 2 (MRD2), and levator muscle function (LF) are crucial metrics for ptosis evaluation and management. However, manual measurements of MRD1, MRD2, and LF are time-consuming, subjective, and prone to human error. Smartphone-based artificial intelligence (AI) image processing is a potential solution to overcome these limitations. OBJECTIVE: We propose the first smartphone-based AI-assisted image processing algorithm for MRD1, MRD2, and LF measurements. METHODS: This observational study included 822 eyes of 411 volunteers aged over 18 years from August 1, 2020, to April 30, 2021. Six orbital photographs (bilateral primary gaze, up-gaze, and down-gaze) were taken using a smartphone (iPhone 11 Pro Max). The gold-standard measurements and normalized eye photographs were obtained from these orbital photographs and compiled using AI-assisted software to create MRD1, MRD2, and LF models. RESULTS: The Pearson correlation coefficients between the gold-standard measurements and the predicted values obtained with the MRD1 and MRD2 models were excellent (r=0.91 and 0.88, respectively) and that obtained with the LF model was good (r=0.73). The intraclass correlation coefficient demonstrated excellent agreement between the gold-standard measurements and the values predicted by the MRD1 and MRD2 models (0.90 and 0.84, respectively), and substantial agreement with the LF model (0.69). The mean absolute errors were 0.35 mm, 0.37 mm, and 1.06 mm for the MRD1, MRD2, and LF models, respectively. The 95% limits of agreement were –0.94 to 0.94 mm for the MRD1 model, –0.92 to 1.03 mm for the MRD2 model, and –0.63 to 2.53 mm for the LF model. CONCLUSIONS: We developed the first smartphone-based AI-assisted image processing algorithm for eyelid measurements. MRD1, MRD2, and LF measures can be taken in a quick, objective, and convenient manner. Furthermore, by using a smartphone, the examiner can check these measurements anywhere and at any time, which facilitates data collection. JMIR Publications 2021-10-08 /pmc/articles/PMC8538024/ /pubmed/34538776 http://dx.doi.org/10.2196/32444 Text en ©Hung-Chang Chen, Shin-Shi Tzeng, Yen-Chang Hsiao, Ruei-Feng Chen, Erh-Chien Hung, Oscar K Lee. Originally published in JMIR mHealth and uHealth (https://mhealth.jmir.org), 08.10.2021. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR mHealth and uHealth, is properly cited. The complete bibliographic information, a link to the original publication on https://mhealth.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Original Paper
Chen, Hung-Chang
Tzeng, Shin-Shi
Hsiao, Yen-Chang
Chen, Ruei-Feng
Hung, Erh-Chien
Lee, Oscar K
Smartphone-Based Artificial Intelligence–Assisted Prediction for Eyelid Measurements: Algorithm Development and Observational Validation Study
title Smartphone-Based Artificial Intelligence–Assisted Prediction for Eyelid Measurements: Algorithm Development and Observational Validation Study
title_full Smartphone-Based Artificial Intelligence–Assisted Prediction for Eyelid Measurements: Algorithm Development and Observational Validation Study
title_fullStr Smartphone-Based Artificial Intelligence–Assisted Prediction for Eyelid Measurements: Algorithm Development and Observational Validation Study
title_full_unstemmed Smartphone-Based Artificial Intelligence–Assisted Prediction for Eyelid Measurements: Algorithm Development and Observational Validation Study
title_short Smartphone-Based Artificial Intelligence–Assisted Prediction for Eyelid Measurements: Algorithm Development and Observational Validation Study
title_sort smartphone-based artificial intelligence–assisted prediction for eyelid measurements: algorithm development and observational validation study
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538024/
https://www.ncbi.nlm.nih.gov/pubmed/34538776
http://dx.doi.org/10.2196/32444
work_keys_str_mv AT chenhungchang smartphonebasedartificialintelligenceassistedpredictionforeyelidmeasurementsalgorithmdevelopmentandobservationalvalidationstudy
AT tzengshinshi smartphonebasedartificialintelligenceassistedpredictionforeyelidmeasurementsalgorithmdevelopmentandobservationalvalidationstudy
AT hsiaoyenchang smartphonebasedartificialintelligenceassistedpredictionforeyelidmeasurementsalgorithmdevelopmentandobservationalvalidationstudy
AT chenrueifeng smartphonebasedartificialintelligenceassistedpredictionforeyelidmeasurementsalgorithmdevelopmentandobservationalvalidationstudy
AT hungerhchien smartphonebasedartificialintelligenceassistedpredictionforeyelidmeasurementsalgorithmdevelopmentandobservationalvalidationstudy
AT leeoscark smartphonebasedartificialintelligenceassistedpredictionforeyelidmeasurementsalgorithmdevelopmentandobservationalvalidationstudy