Cargando…
Smartphone-Based Artificial Intelligence–Assisted Prediction for Eyelid Measurements: Algorithm Development and Observational Validation Study
BACKGROUND: Margin reflex distance 1 (MRD1), margin reflex distance 2 (MRD2), and levator muscle function (LF) are crucial metrics for ptosis evaluation and management. However, manual measurements of MRD1, MRD2, and LF are time-consuming, subjective, and prone to human error. Smartphone-based artif...
Autores principales: | Chen, Hung-Chang, Tzeng, Shin-Shi, Hsiao, Yen-Chang, Chen, Ruei-Feng, Hung, Erh-Chien, Lee, Oscar K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538024/ https://www.ncbi.nlm.nih.gov/pubmed/34538776 http://dx.doi.org/10.2196/32444 |
Ejemplares similares
-
Orbital and eyelid diseases: The next breakthrough in artificial intelligence?
por: Bao, Xiao-Li, et al.
Publicado: (2022) -
Artificial intelligence to detect malignant eyelid tumors from photographic images
por: Li, Zhongwen, et al.
Publicado: (2022) -
Development and accuracy of an artificial intelligence algorithm for acne grading from smartphone photographs
por: Seité, Sophie, et al.
Publicado: (2019) -
Medios– An offline, smartphone-based artificial intelligence algorithm for the diagnosis of diabetic retinopathy
por: Sosale, Bhavana, et al.
Publicado: (2020) -
Smartphone-based artificial intelligence using a transfer learning algorithm for the detection and diagnosis of middle ear diseases: A retrospective deep learning study
por: Chen, Yen-Chi, et al.
Publicado: (2022)