Cargando…

Broadband Achromatic Metasurfaces for Longwave Infrared Applications

Longwave infrared (LWIR) optics are essential for several technologies, such as thermal imaging and wireless communication, but their development is hindered by their bulk and high fabrication costs. Metasurfaces have recently emerged as powerful platforms for LWIR integrated optics; however, conven...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Naitao, Xu, Nianxi, Shan, Dongzhi, Zhao, Yuanhang, Gao, Jinsong, Tang, Yang, Sun, Qiao, Chen, Xin, Wang, Yansong, Feng, Xiaoguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538097/
https://www.ncbi.nlm.nih.gov/pubmed/34685203
http://dx.doi.org/10.3390/nano11102760
Descripción
Sumario:Longwave infrared (LWIR) optics are essential for several technologies, such as thermal imaging and wireless communication, but their development is hindered by their bulk and high fabrication costs. Metasurfaces have recently emerged as powerful platforms for LWIR integrated optics; however, conventional metasurfaces are highly chromatic, which adversely affects their performance in broadband applications. In this work, the chromatic dispersion properties of metasurfaces are analyzed via ray tracing, and a general method for correcting chromatic aberrations of metasurfaces is presented. By combining the dynamic and geometric phases, the desired group delay and phase profiles are imparted to the metasurfaces simultaneously, resulting in good achromatic performance. Two broadband achromatic metasurfaces based on all-germanium platforms are demonstrated in the LWIR: a broadband achromatic metalens with a numerical aperture of 0.32, an average intensity efficiency of 31%, and a Strehl ratio above 0.8 from 9.6 μm to 11.6 μm, and a broadband achromatic metasurface grating with a constant deflection angle of 30° from 9.6 μm to 11.6 μm. Compared with state-of-the-art chromatic-aberration-restricted LWIR metasurfaces, this work represents a substantial advance and brings the field a step closer to practical applications.