Cargando…
Customisable Tablet Printing: The Development of Multimaterial Hot Melt Inkjet 3D Printing to Produce Complex and Personalised Dosage Forms
One of the most striking characteristics of 3D printing is its capability to produce multi-material objects with complex geometry. In pharmaceutics this translates to the possibility of dosage forms with multi-drug loading, tailored dosing and release. We have developed a novel dual material hot-mel...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538252/ https://www.ncbi.nlm.nih.gov/pubmed/34683972 http://dx.doi.org/10.3390/pharmaceutics13101679 |
_version_ | 1784588460939542528 |
---|---|
author | Lion, Anna Wildman, Ricky D. Alexander, Morgan R. Roberts, Clive J. |
author_facet | Lion, Anna Wildman, Ricky D. Alexander, Morgan R. Roberts, Clive J. |
author_sort | Lion, Anna |
collection | PubMed |
description | One of the most striking characteristics of 3D printing is its capability to produce multi-material objects with complex geometry. In pharmaceutics this translates to the possibility of dosage forms with multi-drug loading, tailored dosing and release. We have developed a novel dual material hot-melt inkjet 3D printing system which allows for precisely controlled multi-material solvent free inkjet printing. This reduces the need for time-consuming exchanges of printable inks and expensive post processing steps. With this printer, we show the potential for design of printed dosage forms for tailored drug release, including single and multi-material complex 3D patterns with defined localised drug loading where a drug-free ink is used as a release-retarding barrier. For this, we used Compritol HD5 ATO (matrix material) and Fenofibrate (model drug) to prepare both drug-free and drug-loaded inks with drug concentrations varying between 5% and 30% (w/w). The printed constructs demonstrated the required physical properties and displayed immediate, extended, delayed and pulsatile drug release depending on drug localisation inside of the printed formulations. For the first time, this paper demonstrates that a commonly used pharmaceutical lipid, Compritol HD5 ATO, can be printed via hot-melt inkjet printing as single ink material, or in combination with a drug, without the need for additional solvents. Concurrently, this paper demonstrates the capabilities of dual material hot-melt inkjet 3D printing system to produce multi-material personalised solid dosage forms. |
format | Online Article Text |
id | pubmed-8538252 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85382522021-10-24 Customisable Tablet Printing: The Development of Multimaterial Hot Melt Inkjet 3D Printing to Produce Complex and Personalised Dosage Forms Lion, Anna Wildman, Ricky D. Alexander, Morgan R. Roberts, Clive J. Pharmaceutics Article One of the most striking characteristics of 3D printing is its capability to produce multi-material objects with complex geometry. In pharmaceutics this translates to the possibility of dosage forms with multi-drug loading, tailored dosing and release. We have developed a novel dual material hot-melt inkjet 3D printing system which allows for precisely controlled multi-material solvent free inkjet printing. This reduces the need for time-consuming exchanges of printable inks and expensive post processing steps. With this printer, we show the potential for design of printed dosage forms for tailored drug release, including single and multi-material complex 3D patterns with defined localised drug loading where a drug-free ink is used as a release-retarding barrier. For this, we used Compritol HD5 ATO (matrix material) and Fenofibrate (model drug) to prepare both drug-free and drug-loaded inks with drug concentrations varying between 5% and 30% (w/w). The printed constructs demonstrated the required physical properties and displayed immediate, extended, delayed and pulsatile drug release depending on drug localisation inside of the printed formulations. For the first time, this paper demonstrates that a commonly used pharmaceutical lipid, Compritol HD5 ATO, can be printed via hot-melt inkjet printing as single ink material, or in combination with a drug, without the need for additional solvents. Concurrently, this paper demonstrates the capabilities of dual material hot-melt inkjet 3D printing system to produce multi-material personalised solid dosage forms. MDPI 2021-10-14 /pmc/articles/PMC8538252/ /pubmed/34683972 http://dx.doi.org/10.3390/pharmaceutics13101679 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lion, Anna Wildman, Ricky D. Alexander, Morgan R. Roberts, Clive J. Customisable Tablet Printing: The Development of Multimaterial Hot Melt Inkjet 3D Printing to Produce Complex and Personalised Dosage Forms |
title | Customisable Tablet Printing: The Development of Multimaterial Hot Melt Inkjet 3D Printing to Produce Complex and Personalised Dosage Forms |
title_full | Customisable Tablet Printing: The Development of Multimaterial Hot Melt Inkjet 3D Printing to Produce Complex and Personalised Dosage Forms |
title_fullStr | Customisable Tablet Printing: The Development of Multimaterial Hot Melt Inkjet 3D Printing to Produce Complex and Personalised Dosage Forms |
title_full_unstemmed | Customisable Tablet Printing: The Development of Multimaterial Hot Melt Inkjet 3D Printing to Produce Complex and Personalised Dosage Forms |
title_short | Customisable Tablet Printing: The Development of Multimaterial Hot Melt Inkjet 3D Printing to Produce Complex and Personalised Dosage Forms |
title_sort | customisable tablet printing: the development of multimaterial hot melt inkjet 3d printing to produce complex and personalised dosage forms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538252/ https://www.ncbi.nlm.nih.gov/pubmed/34683972 http://dx.doi.org/10.3390/pharmaceutics13101679 |
work_keys_str_mv | AT lionanna customisabletabletprintingthedevelopmentofmultimaterialhotmeltinkjet3dprintingtoproducecomplexandpersonaliseddosageforms AT wildmanrickyd customisabletabletprintingthedevelopmentofmultimaterialhotmeltinkjet3dprintingtoproducecomplexandpersonaliseddosageforms AT alexandermorganr customisabletabletprintingthedevelopmentofmultimaterialhotmeltinkjet3dprintingtoproducecomplexandpersonaliseddosageforms AT robertsclivej customisabletabletprintingthedevelopmentofmultimaterialhotmeltinkjet3dprintingtoproducecomplexandpersonaliseddosageforms |