Cargando…
The Bio-Persistence of Reversible Inflammatory, Histological Changes and Metabolic Profile Alterations in Rat Livers after Silver/Gold Nanorod Administration
As a widely applied nanomaterial, silver nanomaterials (AgNMs) have increased public concern about their potential adverse biological effects. However, there are few related researches on the long-term toxicity, especially on the reversibility of AgNMs in vivo. In the current study, this issue was t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538332/ https://www.ncbi.nlm.nih.gov/pubmed/34685095 http://dx.doi.org/10.3390/nano11102656 |
Sumario: | As a widely applied nanomaterial, silver nanomaterials (AgNMs) have increased public concern about their potential adverse biological effects. However, there are few related researches on the long-term toxicity, especially on the reversibility of AgNMs in vivo. In the current study, this issue was tackled by exploring liver damage after an intravenous injection of silver nanorods with golden cores (Au@AgNRs) and its potential recovery in a relatively long term (8 w). After the administration of Au@AgNRs into rats, Ag was found to be rapidly cleared from blood within 10 min and mainly accumulated in liver as well as spleen until 8 w. All detected parameters almost displayed a two-stage response to Au@AgNRs administration, including biological markers, histological changes and metabolic variations. For the short-term (2 w) responses, some toxicological parameters (hematological changes, cytokines, liver damages etc.) significantly changed compared to control and AuNRs group. However, after a 6-week recovery, all abovementioned changes mostly returned to the normal levels in the Au@AgNRs group. These indicated that after a lengthy period, acute bioeffects elicited by AgNMs could be followed by the adaptive recovery, which will provide a novel and valuable toxicity mechanism of AgNMs for potential biomedical applications of AgNMs. |
---|