Cargando…
The Interface amongst Conserved and Specialized Pathways in Non-Paclitaxel and Paclitaxel Accumulating Taxus Cultures
Plant cell cultures derived from Taxus are used to produce valuable metabolites like paclitaxel, a chemotherapeutic drug. Methyl jasmonate elicitation enhances paclitaxel accumulation, but also inhibits culture growth and increases phenylpropanoid biosynthesis, two side effects that detract from tax...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538509/ https://www.ncbi.nlm.nih.gov/pubmed/34677403 http://dx.doi.org/10.3390/metabo11100688 |
Sumario: | Plant cell cultures derived from Taxus are used to produce valuable metabolites like paclitaxel, a chemotherapeutic drug. Methyl jasmonate elicitation enhances paclitaxel accumulation, but also inhibits culture growth and increases phenylpropanoid biosynthesis, two side effects that detract from taxane accumulation. To understand the connection between all of these processes, a systems approach is applied to investigate cell-wide metabolism in Taxus. Non-paclitaxel and paclitaxel accumulating cultures were elicited over single and multi-generational periods, and subsequent changes in conserved and specialized metabolism were quantified. Methyl jasmonate typically resulted in decreased growth and increased metabolite content in paclitaxel accumulating cultures. Conversely, elicitation typically resulted in either no change or decrease in accumulation of metabolites in the non-paclitaxel accumulating cultures. In both sets of cultures, variability was seen in the response to methyl jasmonate across generations of cell growth. Consolidation of these data determined that paclitaxel accumulation and basal levels of phenolic and flavonoid compounds are indirectly correlated with aggregate size. These approaches assess alternative metabolic pathways that are linked to paclitaxel biosynthesis and provide a comprehensive strategy to both understand the relationship between conserved and specialized metabolism in plants and in the design of strategies to increase natural product yields in plant cell culture. |
---|