Cargando…

Patient-Derived Induced Pluripotent Stem Cell Models for Phenotypic Screening in the Neuronal Ceroid Lipofuscinoses

Batten disease or neuronal ceroid lipofuscinosis (NCL) is a group of rare, fatal, inherited neurodegenerative lysosomal storage disorders. Numerous genes (CLN1–CLN8, CLN10–CLN14) were identified in which mutations can lead to NCL; however, the underlying pathophysiology remains elusive. Despite this...

Descripción completa

Detalles Bibliográficos
Autores principales: Morsy, Ahmed, Carmona, Angelica V., Trippier, Paul C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538546/
https://www.ncbi.nlm.nih.gov/pubmed/34684815
http://dx.doi.org/10.3390/molecules26206235
_version_ 1784588531990003712
author Morsy, Ahmed
Carmona, Angelica V.
Trippier, Paul C.
author_facet Morsy, Ahmed
Carmona, Angelica V.
Trippier, Paul C.
author_sort Morsy, Ahmed
collection PubMed
description Batten disease or neuronal ceroid lipofuscinosis (NCL) is a group of rare, fatal, inherited neurodegenerative lysosomal storage disorders. Numerous genes (CLN1–CLN8, CLN10–CLN14) were identified in which mutations can lead to NCL; however, the underlying pathophysiology remains elusive. Despite this, the NCLs share some of the same features and symptoms but vary in respect to severity and onset of symptoms by age. Some common symptoms include the progressive loss of vision, mental and motor deterioration, epileptic seizures, premature death, and in the rare adult-onset, dementia. Currently, all forms of NCL are fatal, and no curative treatments are available. Induced pluripotent stem cells (iPSCs) can differentiate into any cell type of the human body. Cells reprogrammed from a patient have the advantage of acquiring disease pathogenesis along with recapitulation of disease-associated phenotypes. They serve as practical model systems to shed new light on disease mechanisms and provide a phenotypic screening platform to enable drug discovery. Herein, we provide an overview of available iPSC models for a number of different NCLs. More specifically, we highlight findings in these models that may spur target identification and drug development.
format Online
Article
Text
id pubmed-8538546
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85385462021-10-24 Patient-Derived Induced Pluripotent Stem Cell Models for Phenotypic Screening in the Neuronal Ceroid Lipofuscinoses Morsy, Ahmed Carmona, Angelica V. Trippier, Paul C. Molecules Review Batten disease or neuronal ceroid lipofuscinosis (NCL) is a group of rare, fatal, inherited neurodegenerative lysosomal storage disorders. Numerous genes (CLN1–CLN8, CLN10–CLN14) were identified in which mutations can lead to NCL; however, the underlying pathophysiology remains elusive. Despite this, the NCLs share some of the same features and symptoms but vary in respect to severity and onset of symptoms by age. Some common symptoms include the progressive loss of vision, mental and motor deterioration, epileptic seizures, premature death, and in the rare adult-onset, dementia. Currently, all forms of NCL are fatal, and no curative treatments are available. Induced pluripotent stem cells (iPSCs) can differentiate into any cell type of the human body. Cells reprogrammed from a patient have the advantage of acquiring disease pathogenesis along with recapitulation of disease-associated phenotypes. They serve as practical model systems to shed new light on disease mechanisms and provide a phenotypic screening platform to enable drug discovery. Herein, we provide an overview of available iPSC models for a number of different NCLs. More specifically, we highlight findings in these models that may spur target identification and drug development. MDPI 2021-10-15 /pmc/articles/PMC8538546/ /pubmed/34684815 http://dx.doi.org/10.3390/molecules26206235 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Morsy, Ahmed
Carmona, Angelica V.
Trippier, Paul C.
Patient-Derived Induced Pluripotent Stem Cell Models for Phenotypic Screening in the Neuronal Ceroid Lipofuscinoses
title Patient-Derived Induced Pluripotent Stem Cell Models for Phenotypic Screening in the Neuronal Ceroid Lipofuscinoses
title_full Patient-Derived Induced Pluripotent Stem Cell Models for Phenotypic Screening in the Neuronal Ceroid Lipofuscinoses
title_fullStr Patient-Derived Induced Pluripotent Stem Cell Models for Phenotypic Screening in the Neuronal Ceroid Lipofuscinoses
title_full_unstemmed Patient-Derived Induced Pluripotent Stem Cell Models for Phenotypic Screening in the Neuronal Ceroid Lipofuscinoses
title_short Patient-Derived Induced Pluripotent Stem Cell Models for Phenotypic Screening in the Neuronal Ceroid Lipofuscinoses
title_sort patient-derived induced pluripotent stem cell models for phenotypic screening in the neuronal ceroid lipofuscinoses
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538546/
https://www.ncbi.nlm.nih.gov/pubmed/34684815
http://dx.doi.org/10.3390/molecules26206235
work_keys_str_mv AT morsyahmed patientderivedinducedpluripotentstemcellmodelsforphenotypicscreeningintheneuronalceroidlipofuscinoses
AT carmonaangelicav patientderivedinducedpluripotentstemcellmodelsforphenotypicscreeningintheneuronalceroidlipofuscinoses
AT trippierpaulc patientderivedinducedpluripotentstemcellmodelsforphenotypicscreeningintheneuronalceroidlipofuscinoses