Cargando…
Structure and Properties of Ti/Ti64 Graded Material Manufactured by Laser Powder Bed Fusion
Multimaterial additive manufacturing is an attractive way of producing parts with improved functional properties by combining materials with different properties within a single part. Pure Ti provides a high ductility and an improved corrosion resistance, while the Ti64 alloy has a higher strength....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538550/ https://www.ncbi.nlm.nih.gov/pubmed/34683732 http://dx.doi.org/10.3390/ma14206140 |
Sumario: | Multimaterial additive manufacturing is an attractive way of producing parts with improved functional properties by combining materials with different properties within a single part. Pure Ti provides a high ductility and an improved corrosion resistance, while the Ti64 alloy has a higher strength. The combination of these alloys within a single part using additive manufacturing can be used to produce advanced multimaterial components. This work explores the multimaterial Laser Powder Bed Fusion (L-PBF) of Ti/Ti64 graded material. The microstructure and mechanical properties of Ti/Ti64-graded samples fabricated by L-PBF with different geometries of the graded zones, as well as different effects of heat treatment and hot isostatic pressing on the microstructure of the bimetallic Ti/Ti64 samples, were investigated. The transition zone microstructure has a distinct character and does not undergo significant changes during heat treatment and hot isostatic pressing. The tensile tests of Ti/Ti64 samples showed that when the Ti64 zones were located along the sample, the ratio of cross-sections has a greater influence on the mechanical properties than their shape and location. The presented results of the investigation of the graded Ti/Ti64 samples allow tailoring properties for the possible applications of multimaterial parts. |
---|