Cargando…

CRISPR/Cas9 Delivery System Engineering for Genome Editing in Therapeutic Applications

The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) systems have emerged as a robust and versatile genome editing platform for gene correction, transcriptional regulation, disease modeling, and nucleic acids imaging. However, the insufficient tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Hao, Zhang, Feng, Ding, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538656/
https://www.ncbi.nlm.nih.gov/pubmed/34683943
http://dx.doi.org/10.3390/pharmaceutics13101649
Descripción
Sumario:The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) systems have emerged as a robust and versatile genome editing platform for gene correction, transcriptional regulation, disease modeling, and nucleic acids imaging. However, the insufficient transfection and off-target risks have seriously hampered the potential biomedical applications of CRISPR/Cas9 technology. Herein, we review the recent progress towards CRISPR/Cas9 system delivery based on viral and non-viral vectors. We summarize the CRISPR/Cas9-inspired clinical trials and analyze the CRISPR/Cas9 delivery technology applied in the trials. The rational-designed non-viral vectors for delivering three typical forms of CRISPR/Cas9 system, including plasmid DNA (pDNA), mRNA, and ribonucleoprotein (RNP, Cas9 protein complexed with gRNA) were highlighted in this review. The vector-derived strategies to tackle the off-target concerns were further discussed. Moreover, we consider the challenges and prospects to realize the clinical potential of CRISPR/Cas9-based genome editing.