Cargando…
Healthy Kidney Segmentation in the Dce-Mr Images Using a Convolutional Neural Network and Temporal Signal Characteristics
Quantification of renal perfusion based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) requires determination of signal intensity time courses in the region of renal parenchyma. Thus, selection of voxels representing the kidney must be accomplished with special care and constitute...
Autores principales: | Klepaczko, Artur, Eikefjord, Eli, Lundervold, Arvid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538657/ https://www.ncbi.nlm.nih.gov/pubmed/34695931 http://dx.doi.org/10.3390/s21206714 |
Ejemplares similares
-
Deep Convolutional Neural Networks-Based Automatic Breast Segmentation and Mass Detection in DCE-MRI
por: Jiao, Han, et al.
Publicado: (2020) -
Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks
por: Deniz, Cem M., et al.
Publicado: (2018) -
Automated segmentation of endometrial cancer on MR images using deep learning
por: Hodneland, Erlend, et al.
Publicado: (2021) -
Using spatial-temporal ensembles of convolutional neural networks for lumen segmentation in ureteroscopy
por: Lazo, Jorge F., et al.
Publicado: (2021) -
Improving Automatic Renal Segmentation in Clinically Normal and Abnormal Paediatric DCE-MRI via Contrast Maximisation and Convolutional Networks for Computing Markers of Kidney Function
por: Asaturyan, Hykoush, et al.
Publicado: (2021)