Cargando…
Design of Flexible Hardware Accelerators for Image Convolutions and Transposed Convolutions
Nowadays, computer vision relies heavily on convolutional neural networks (CNNs) to perform complex and accurate tasks. Among them, super-resolution CNNs represent a meaningful example, due to the presence of both convolutional (CONV) and transposed convolutional (TCONV) layers. While the former exp...
Autores principales: | Sestito, Cristian, Spagnolo, Fanny, Perri, Stefania |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538663/ https://www.ncbi.nlm.nih.gov/pubmed/34677296 http://dx.doi.org/10.3390/jimaging7100210 |
Ejemplares similares
-
Efficient Hardware Design and Implementation of the Voting Scheme-Based Convolution
por: Pereira, Pedro, et al.
Publicado: (2022) -
Efficient Deconvolution Architecture for Heterogeneous Systems-on-Chip
por: Perri, Stefania, et al.
Publicado: (2020) -
An Efficient Hardware-Oriented Single-Pass Approach for Connected Component Analysis
por: Spagnolo, Fanny, et al.
Publicado: (2019) -
Parameterizable Design on Convolutional Neural Networks Using Chisel Hardware Construction Language
por: Madineni, Mukesh Chowdary, et al.
Publicado: (2023) -
Pareto Optimized Adaptive Learning with Transposed Convolution for Image Fusion Alzheimer’s Disease Classification
por: Odusami, Modupe, et al.
Publicado: (2023)