Cargando…
Anti-Inflammatory Effect of 4,5-Dicaffeoylquinic Acid on RAW264.7 Cells and a Rat Model of Inflammation
Anti-inflammatory agents that are safer and more effective than the currently used non-steroidal anti-inflammatory drugs are urgently needed. The dicaffeoylquinic acid (diCQA) isomer 4,5-diCQA exhibits antioxidant activity and various other health-promoting benefits; however, its anti-inflammatory p...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538716/ https://www.ncbi.nlm.nih.gov/pubmed/34684537 http://dx.doi.org/10.3390/nu13103537 |
Sumario: | Anti-inflammatory agents that are safer and more effective than the currently used non-steroidal anti-inflammatory drugs are urgently needed. The dicaffeoylquinic acid (diCQA) isomer 4,5-diCQA exhibits antioxidant activity and various other health-promoting benefits; however, its anti-inflammatory properties require further investigation. This study was conducted to evaluate the anti-inflammatory properties of 4,5-diCQA in vitro and in vivo using RAW264.7 cells and a carrageenan-induced inflammation model, respectively. In RAW264.7 cells, 4,5-diCQA pretreatment significantly inhibited lipopolysaccharide-induced expression of nitric oxide, prostaglandin E(2), nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α, interleukin-1β, and interleukin-6, without inducing cytotoxicity. The inhibitory effects of 4,5-diCQA were mediated by the suppression of nuclear factor-κB nuclear translocation and mitogen-activated protein kinase (MAPK) phosphorylation. Oral administration of 4,5-diCQA at doses of 5, 10, and 20 mg/kg of the body weight suppressed carrageenan-induced edema and the expression of nitric oxide synthase, cyclooxygenase-2, and tumor necrosis factor-α in a dose-dependent manner. Collectively, our results suggest that 4,5-diCQA exerts anti-inflammatory effects by suppressing activation of the nuclear factor-κB and MAPK pathways in vitro and reducing carrageenan-induced edema in vivo. Therefore, 4,5-diCQA shows potential as a natural alternative to non-steroidal anti-inflammatory drugs. |
---|