Cargando…

Ruminant-Waste Protein Hydrolysates and Their Derivatives as a Bio-Flocculant for Oil Sands Tailing Management

Reclamation of tailings ponds is a critical issue for the oil industry. After years of consolidation, the slurry in tailings ponds, also known as fluid fine tailings, is mainly comprised of residual bitumen, water, and fine clay particles. To reclaim the lands that these ponds occupy, separation of...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuzik, Jesse, Khatri, Vinay, Chae, Michael, Mussone, Paolo, Bressler, David C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538817/
https://www.ncbi.nlm.nih.gov/pubmed/34685293
http://dx.doi.org/10.3390/polym13203533
Descripción
Sumario:Reclamation of tailings ponds is a critical issue for the oil industry. After years of consolidation, the slurry in tailings ponds, also known as fluid fine tailings, is mainly comprised of residual bitumen, water, and fine clay particles. To reclaim the lands that these ponds occupy, separation of the solid particles from the liquid phase is necessary to facilitate water removal and recycling. Traditionally, synthetic polymers have been used as flocculants to facilitate this process, but they can have negative environmental consequences. The use of biological polymers may provide a more environmentally friendly approach to flocculation, and eventual soil remediation, due to their natural biodegradability. Peptides derived from specified risk materials (SRM), a proteinaceous waste stream derived from the rendering industry, were investigated to assess their viability for this application. While these peptides could achieve >50% settling within 3 h in bench-scale settling tests using kaolinite tailings, crosslinking peptides with glutaraldehyde greatly improved their flocculation performance, leading to a >50% settling in only 10 min. Settling experiments using materials obtained through different reactant ratios during crosslinking identified a local optimum molar reactant ratio of 1:32 (peptide amino groups to glutaraldehyde aldehyde groups), resulting in 81.6% settling after 48 h. Taken together, these data highlight the novelty of crosslinking waste-derived peptides with glutaraldehyde to generate a value-added bioflocculant with potential for tailings ponds consolidation.