Cargando…
A Review of Finite Element Analysis and Artificial Neural Networks as Failure Pressure Prediction Tools for Corroded Pipelines
This paper discusses the capabilities of artificial neural networks (ANNs) when integrated with the finite element method (FEM) and utilized as prediction tools to predict the failure pressure of corroded pipelines. The use of conventional residual strength assessment methods has proven to produce p...
Autores principales: | Vijaya Kumar, Suria Devi, Lo Yin Kai, Michael, Arumugam, Thibankumar, Karuppanan, Saravanan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538846/ https://www.ncbi.nlm.nih.gov/pubmed/34683727 http://dx.doi.org/10.3390/ma14206135 |
Ejemplares similares
-
Artificial Neural Network-Based Failure Pressure Prediction of API 5L X80 Pipeline with Circumferentially Aligned Interacting Corrosion Defects Subjected to Combined Loadings
por: Vijaya Kumar, Suria Devi, et al.
Publicado: (2022) -
Collapse of Corroded Pipelines under Combined Tension and External Pressure
por: Ye, Hao, et al.
Publicado: (2016) -
A Prognostics Method Based on Back Propagation Neural Network for Corroded Pipelines
por: Xie, Mingjiang, et al.
Publicado: (2021) -
A Semi Empirical Regression Model for Critical Dent Depth of Externally Corroded X65 Gas Pipeline
por: Yang, Yue, et al.
Publicado: (2022) -
TRI: Corroding Its Original Intent?
por: Bazilchuk, Nancy
Publicado: (2006)