Cargando…
Application of Dense Neural Networks for Detection of Atrial Fibrillation and Ranking of Augmented ECG Feature Set
Considering the significant burden to patients and healthcare systems globally related to atrial fibrillation (AF) complications, the early AF diagnosis is of crucial importance. In the view of prominent perspectives for fast and accurate point-of-care arrhythmia detection, our study optimizes an ar...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538849/ https://www.ncbi.nlm.nih.gov/pubmed/34696061 http://dx.doi.org/10.3390/s21206848 |
Sumario: | Considering the significant burden to patients and healthcare systems globally related to atrial fibrillation (AF) complications, the early AF diagnosis is of crucial importance. In the view of prominent perspectives for fast and accurate point-of-care arrhythmia detection, our study optimizes an artificial neural network (NN) classifier and ranks the importance of enhanced 137 diagnostic ECG features computed from time and frequency ECG signal representations of short single-lead strips available in 2017 Physionet/CinC Challenge database. Based on hyperparameters’ grid search of densely connected NN layers, we derive the optimal topology with three layers and 128, 32, 4 neurons per layer (DenseNet-3@128-32-4), which presents maximal F1-scores for classification of Normal rhythms (0.883, 5076 strips), AF (0.825, 758 strips), Other rhythms (0.705, 2415 strips), Noise (0.618, 279 strips) and total F1 relevant to the CinC Challenge of 0.804, derived by five-fold cross-validation. DenseNet-3@128-32-4 performs equally well with 137 to 32 features and presents tolerable reduction by about 0.03 to 0.06 points for limited input sets, including 8 and 16 features, respectively. The feature reduction is linked to effective application of a comprehensive method for computation of the feature map importance based on the weights of the activated neurons through the total path from input to specific output in DenseNet. The detailed analysis of 20 top-ranked ECG features with greatest importance to the detection of each rhythm and overall of all rhythms reveals DenseNet decision-making process, noticeably corresponding to the cardiologists’ diagnostic point of view. |
---|