Cargando…
Application of Dense Neural Networks for Detection of Atrial Fibrillation and Ranking of Augmented ECG Feature Set
Considering the significant burden to patients and healthcare systems globally related to atrial fibrillation (AF) complications, the early AF diagnosis is of crucial importance. In the view of prominent perspectives for fast and accurate point-of-care arrhythmia detection, our study optimizes an ar...
Autores principales: | Krasteva, Vessela, Christov, Ivaylo, Naydenov, Stefan, Stoyanov, Todor, Jekova, Irena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538849/ https://www.ncbi.nlm.nih.gov/pubmed/34696061 http://dx.doi.org/10.3390/s21206848 |
Ejemplares similares
-
Atrioventricular Synchronization for Detection of Atrial Fibrillation and Flutter in One to Twelve ECG Leads Using a Dense Neural Network Classifier
por: Jekova, Irena, et al.
Publicado: (2022) -
Recognition of Supraventricular Arrhythmias in Holter ECG Recordings by ECHOView Color Map: A Case Series Study
por: Naydenov, Stefan, et al.
Publicado: (2023) -
Simulating Arbitrary Electrode Reversals in Standard 12-Lead ECG
por: Krasteva, Vessela, et al.
Publicado: (2019) -
Human Identification by Cross-Correlation and Pattern Matching of Personalized Heartbeat: Influence of ECG Leads and Reference Database Size
por: Jekova, Irena, et al.
Publicado: (2018) -
Optimization of End-to-End Convolutional Neural Networks for Analysis of Out-of-Hospital Cardiac Arrest Rhythms during Cardiopulmonary Resuscitation
por: Jekova, Irena, et al.
Publicado: (2021)