Cargando…
Weed Classification Using Explainable Multi-Resolution Slot Attention
In agriculture, explainable deep neural networks (DNNs) can be used to pinpoint the discriminative part of weeds for an imagery classification task, albeit at a low resolution, to control the weed population. This paper proposes the use of a multi-layer attention procedure based on a transformer com...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538865/ https://www.ncbi.nlm.nih.gov/pubmed/34695919 http://dx.doi.org/10.3390/s21206705 |
Sumario: | In agriculture, explainable deep neural networks (DNNs) can be used to pinpoint the discriminative part of weeds for an imagery classification task, albeit at a low resolution, to control the weed population. This paper proposes the use of a multi-layer attention procedure based on a transformer combined with a fusion rule to present an interpretation of the DNN decision through a high-resolution attention map. The fusion rule is a weighted average method that is used to combine attention maps from different layers based on saliency. Attention maps with an explanation for why a weed is or is not classified as a certain class help agronomists to shape the high-resolution weed identification keys (WIK) that the model perceives. The model is trained and evaluated on two agricultural datasets that contain plants grown under different conditions: the Plant Seedlings Dataset (PSD) and the Open Plant Phenotyping Dataset (OPPD). The model represents attention maps with highlighted requirements and information about misclassification to enable cross-dataset evaluations. State-of-the-art comparisons represent classification developments after applying attention maps. Average accuracies of 95.42% and 96% are gained for the negative and positive explanations of the PSD test sets, respectively. In OPPD evaluations, accuracies of 97.78% and 97.83% are obtained for negative and positive explanations, respectively. The visual comparison between attention maps also shows high-resolution information. |
---|