Cargando…
Weed Classification Using Explainable Multi-Resolution Slot Attention
In agriculture, explainable deep neural networks (DNNs) can be used to pinpoint the discriminative part of weeds for an imagery classification task, albeit at a low resolution, to control the weed population. This paper proposes the use of a multi-layer attention procedure based on a transformer com...
Autores principales: | Farkhani, Sadaf, Skovsen, Søren Kelstrup, Dyrmann, Mads, Jørgensen, Rasmus Nyholm, Karstoft, Henrik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538865/ https://www.ncbi.nlm.nih.gov/pubmed/34695919 http://dx.doi.org/10.3390/s21206705 |
Ejemplares similares
-
Robust Species Distribution Mapping of Crop Mixtures Using Color Images and Convolutional Neural Networks
por: Skovsen, Søren Kelstrup, et al.
Publicado: (2020) -
A Novel Locating System for Cereal Plant Stem Emerging Points’ Detection Using a Convolutional Neural Network
por: Karimi, Hadi, et al.
Publicado: (2018) -
Estimation of the Botanical Composition of Clover-Grass Leys from RGB Images Using Data Simulation and Fully Convolutional Neural Networks
por: Skovsen, Søren, et al.
Publicado: (2017) -
Weed Growth Stage Estimator Using Deep Convolutional Neural Networks
por: Teimouri, Nima, et al.
Publicado: (2018) -
Designing and Testing a UAV Mapping System for Agricultural Field Surveying
por: Christiansen, Martin Peter, et al.
Publicado: (2017)