Cargando…

An Automated Approach for Electric Network Frequency Estimation in Static and Non-Static Digital Video Recordings

Electric Network Frequency (ENF) is embedded in multimedia recordings if the recordings are captured with a device connected to power mains or placed near the power mains. It is exploited as a tool for multimedia authentication. ENF fluctuates stochastically around its nominal frequency at [Formula:...

Descripción completa

Detalles Bibliográficos
Autores principales: Karantaidis, Georgios, Kotropoulos, Constantine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538866/
https://www.ncbi.nlm.nih.gov/pubmed/34677288
http://dx.doi.org/10.3390/jimaging7100202
Descripción
Sumario:Electric Network Frequency (ENF) is embedded in multimedia recordings if the recordings are captured with a device connected to power mains or placed near the power mains. It is exploited as a tool for multimedia authentication. ENF fluctuates stochastically around its nominal frequency at [Formula: see text] Hz. In indoor environments, luminance variations captured by video recordings can also be exploited for ENF estimation. However, the various textures and different levels of shadow and luminance hinder ENF estimation in static and non-static video, making it a non-trivial problem. To address this problem, a novel automated approach is proposed for ENF estimation in static and non-static digital video recordings. The proposed approach is based on the exploitation of areas with similar characteristics in each video frame. These areas, called superpixels, have a mean intensity that exceeds a specific threshold. The performance of the proposed approach is tested on various videos of real-life scenarios that resemble surveillance from security cameras. These videos are of escalating difficulty and span recordings from static ones to recordings, which exhibit continuous motion. The maximum correlation coefficient is employed to measure the accuracy of ENF estimation against the ground truth signal. Experimental results show that the proposed approach improves ENF estimation against the state-of-the-art, yielding statistically significant accuracy improvements.