Cargando…

Potential of Melt Electrowritten Scaffolds Seeded with Meniscus Cells and Mesenchymal Stromal Cells

Meniscus injury and meniscectomy are strongly related to osteoarthritis, thus there is a clinical need for meniscus replacement. The purpose of this study is to create a meniscus scaffold with micro-scale circumferential and radial fibres suitable for a one-stage cell-based treatment. Poly-caprolact...

Descripción completa

Detalles Bibliográficos
Autores principales: Korpershoek, Jasmijn V., de Ruijter, Mylène, Terhaard, Bastiaan F., Hagmeijer, Michella H., Saris, Daniël B.F., Castilho, Miguel, Malda, Jos, Vonk, Lucienne A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538885/
https://www.ncbi.nlm.nih.gov/pubmed/34681860
http://dx.doi.org/10.3390/ijms222011200
Descripción
Sumario:Meniscus injury and meniscectomy are strongly related to osteoarthritis, thus there is a clinical need for meniscus replacement. The purpose of this study is to create a meniscus scaffold with micro-scale circumferential and radial fibres suitable for a one-stage cell-based treatment. Poly-caprolactone-based scaffolds with three different architectures were made using melt electrowriting (MEW) technology and their in vitro performance was compared with scaffolds made using fused-deposition modelling (FDM) and with the clinically used Collagen Meniscus Implants(®) (CMI(®)). The scaffolds were seeded with meniscus and mesenchymal stromal cells (MSCs) in fibrin gel and cultured for 28 d. A basal level of proteoglycan production was demonstrated in MEW scaffolds, the CMI(®), and fibrin gel control, yet within the FDM scaffolds less proteoglycan production was observed. Compressive properties were assessed under uniaxial confined compression after 1 and 28 d of culture. The MEW scaffolds showed a higher Young’s modulus when compared to the CMI(®) scaffolds and a higher yield point compared to FDM scaffolds. This study demonstrates the feasibility of creating a wedge-shaped meniscus scaffold with MEW using medical-grade materials and seeding the scaffold with a clinically-feasible cell number and -type for potential translation as a one-stage treatment.