Cargando…
Microwave Tomography Using Neural Networks for Its Application in an Industrial Microwave Drying System
The article presents an application of microwave tomography (MWT) in an industrial drying system to develop tomographic-based process control. The imaging modality is applied to estimate moisture distribution in a polymer foam undergoing drying process. Our Leading challenges are fast data acquisiti...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538942/ https://www.ncbi.nlm.nih.gov/pubmed/34696133 http://dx.doi.org/10.3390/s21206919 |
_version_ | 1784588626868305920 |
---|---|
author | Yadav, Rahul Omrani, Adel Link, Guido Vauhkonen, Marko Lähivaara, Timo |
author_facet | Yadav, Rahul Omrani, Adel Link, Guido Vauhkonen, Marko Lähivaara, Timo |
author_sort | Yadav, Rahul |
collection | PubMed |
description | The article presents an application of microwave tomography (MWT) in an industrial drying system to develop tomographic-based process control. The imaging modality is applied to estimate moisture distribution in a polymer foam undergoing drying process. Our Leading challenges are fast data acquisition from the MWT sensors and real-time image reconstruction of the process. Thus, a limited number of sensors are chosen for the MWT and are placed only on top of the polymer foam to enable fast data acquisition. For real-time estimation, we present a neural network-based reconstruction scheme to estimate moisture distribution in a polymer foam. Training data for the neural network is generated using a physics-based electromagnetic scattering model and a parametric model for moisture sample generation. Numerical data for different moisture scenarios are considered to validate and test the performance of the network. Further, the trained network performance is evaluated with data from our developed prototype of the MWT sensor array. The experimental results show that the network has good accuracy and generalization capabilities. |
format | Online Article Text |
id | pubmed-8538942 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85389422021-10-24 Microwave Tomography Using Neural Networks for Its Application in an Industrial Microwave Drying System Yadav, Rahul Omrani, Adel Link, Guido Vauhkonen, Marko Lähivaara, Timo Sensors (Basel) Article The article presents an application of microwave tomography (MWT) in an industrial drying system to develop tomographic-based process control. The imaging modality is applied to estimate moisture distribution in a polymer foam undergoing drying process. Our Leading challenges are fast data acquisition from the MWT sensors and real-time image reconstruction of the process. Thus, a limited number of sensors are chosen for the MWT and are placed only on top of the polymer foam to enable fast data acquisition. For real-time estimation, we present a neural network-based reconstruction scheme to estimate moisture distribution in a polymer foam. Training data for the neural network is generated using a physics-based electromagnetic scattering model and a parametric model for moisture sample generation. Numerical data for different moisture scenarios are considered to validate and test the performance of the network. Further, the trained network performance is evaluated with data from our developed prototype of the MWT sensor array. The experimental results show that the network has good accuracy and generalization capabilities. MDPI 2021-10-19 /pmc/articles/PMC8538942/ /pubmed/34696133 http://dx.doi.org/10.3390/s21206919 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yadav, Rahul Omrani, Adel Link, Guido Vauhkonen, Marko Lähivaara, Timo Microwave Tomography Using Neural Networks for Its Application in an Industrial Microwave Drying System |
title | Microwave Tomography Using Neural Networks for Its Application in an Industrial Microwave Drying System |
title_full | Microwave Tomography Using Neural Networks for Its Application in an Industrial Microwave Drying System |
title_fullStr | Microwave Tomography Using Neural Networks for Its Application in an Industrial Microwave Drying System |
title_full_unstemmed | Microwave Tomography Using Neural Networks for Its Application in an Industrial Microwave Drying System |
title_short | Microwave Tomography Using Neural Networks for Its Application in an Industrial Microwave Drying System |
title_sort | microwave tomography using neural networks for its application in an industrial microwave drying system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538942/ https://www.ncbi.nlm.nih.gov/pubmed/34696133 http://dx.doi.org/10.3390/s21206919 |
work_keys_str_mv | AT yadavrahul microwavetomographyusingneuralnetworksforitsapplicationinanindustrialmicrowavedryingsystem AT omraniadel microwavetomographyusingneuralnetworksforitsapplicationinanindustrialmicrowavedryingsystem AT linkguido microwavetomographyusingneuralnetworksforitsapplicationinanindustrialmicrowavedryingsystem AT vauhkonenmarko microwavetomographyusingneuralnetworksforitsapplicationinanindustrialmicrowavedryingsystem AT lahivaaratimo microwavetomographyusingneuralnetworksforitsapplicationinanindustrialmicrowavedryingsystem |