Cargando…
Accurate Wheat Lodging Extraction from Multi-Channel UAV Images Using a Lightweight Network Model
The extraction of wheat lodging is of great significance to post-disaster agricultural production management, disaster assessment and insurance subsidies. At present, the recognition of lodging wheat in the actual complex field environment still has low accuracy and poor real-time performance. To ov...
Autores principales: | Yang, Baohua, Zhu, Yue, Zhou, Shuaijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538952/ https://www.ncbi.nlm.nih.gov/pubmed/34696038 http://dx.doi.org/10.3390/s21206826 |
Ejemplares similares
-
Identification lodging degree of wheat using point cloud data and convolutional neural network
por: Li, Yunlong, et al.
Publicado: (2022) -
Wheat lodging extraction using Improved_Unet network
por: Yu, Jun, et al.
Publicado: (2022) -
Lightweight Detection System with Global Attention Network (GloAN) for Rice Lodging
por: Kang, Gaobi, et al.
Publicado: (2023) -
A Lightweight and Accurate UAV Detection Method Based on YOLOv4
por: Cai, Hao, et al.
Publicado: (2022) -
Assessment of Soybean Lodging Using UAV Imagery and Machine Learning
por: Sarkar, Shagor, et al.
Publicado: (2023)