Cargando…
Real-Time Detection of Non-Stationary Objects Using Intensity Data in Automotive LiDAR SLAM
This article aims at demonstrating the feasibility of modern deep learning techniques for the real-time detection of non-stationary objects in point clouds obtained from 3-D light detecting and ranging (LiDAR) sensors. The motion segmentation task is considered in the application context of automoti...
Autores principales: | Nowak, Tomasz, Ćwian, Krzysztof, Skrzypczyński, Piotr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538971/ https://www.ncbi.nlm.nih.gov/pubmed/34695994 http://dx.doi.org/10.3390/s21206781 |
Ejemplares similares
-
Large-Scale LiDAR SLAM with Factor Graph Optimization on High-Level Geometric Features
por: Ćwian, Krzysztof, et al.
Publicado: (2021) -
Requirements for Automotive LiDAR Systems
por: Dai, Zhuoqun, et al.
Publicado: (2022) -
LiDAR Point Cloud Generation for SLAM Algorithm Evaluation
por: Sobczak, Łukasz, et al.
Publicado: (2021) -
VILO SLAM: Tightly Coupled Binocular Vision–Inertia SLAM Combined with LiDAR
por: Peng, Gang, et al.
Publicado: (2023) -
Real-Time 3D Object Detection and SLAM Fusion in a Low-Cost LiDAR Test Vehicle Setup
por: Fernandes, Duarte, et al.
Publicado: (2021)