Cargando…

Plasmon Enhanced Second Harmonic Generation from ZnO Nanofilms on Vertical Au Nanorod Arrays

Vertically aligned gold nanorod arrays have attracted much attention for their fascinating optical properties. Different from longitudinal surface plasmon wavelength (LSPW) and edge-to-edge spacing of gold nanorods, the role of gold nanorod diameter in plasmonic enhancement ability of vertical gold...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Qiang, Pan, Chengda, Xue, Yingxian, Fang, Zhiyun, Zhang, Shiyu, Wu, Botao, Wu, E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539005/
https://www.ncbi.nlm.nih.gov/pubmed/34685038
http://dx.doi.org/10.3390/nano11102597
Descripción
Sumario:Vertically aligned gold nanorod arrays have attracted much attention for their fascinating optical properties. Different from longitudinal surface plasmon wavelength (LSPW) and edge-to-edge spacing of gold nanorods, the role of gold nanorod diameter in plasmonic enhancement ability of vertical gold nanorod arrays has rarely been explored. In this work, we selected gold nanorods with similar LSPW but two different diameters (22 and 41 nm), the optical properties of which are dominated by absorption and scattering cross sections, respectively. The vertically aligned arrays of these gold nanorods formed by evaporation self-assembly are coupled with nonlinear ZnO nanocrystal films spin-coated on their surfaces. It was found that the gold nanorod array with a larger diameter can enhance the second harmonic generation (SHG) of ZnO nanofilm by a factor of 27.0, while it is about 7.3 for the smaller gold nanorod array. Theoretical simulations indicate that such stronger enhancement of the larger vertical gold nanorod array compared with the smaller one is due to its stronger scattering ability and greater extent of near-field enhancement at SHG fundamental wavelength. Our work shows that the diameter of gold nanorods is also an important factor to be considered in realizing strong plasmon enhancement of vertically aligned gold nanorod arrays.