Cargando…
Multi-Classification of Complex Microseismic Waveforms Using Convolutional Neural Network: A Case Study in Tunnel Engineering
Due to the complexity of the various waveforms of microseismic data, there are high requirements on the automatic multi-classification of such data; an accurate classification is conducive for further signal processing and stability analysis of surrounding rock masses. In this study, a microseismic...
Autores principales: | Zhang, Hang, Zeng, Jun, Ma, Chunchi, Li, Tianbin, Deng, Yelin, Song, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539024/ https://www.ncbi.nlm.nih.gov/pubmed/34695975 http://dx.doi.org/10.3390/s21206762 |
Ejemplares similares
-
Automated microseismic event location using Master-Event Waveform Stacking
por: Grigoli, Francesco, et al.
Publicado: (2016) -
An Anisotropic Velocity Model for Microseismic Events Localization in Tunnels
por: Shen, Tong, et al.
Publicado: (2023) -
A probability prediction method for the classification of surrounding rock quality of tunnels with incomplete data using Bayesian networks
por: Ma, Junjie, et al.
Publicado: (2022) -
Microseismic Event Location by Considering the Influence of the Empty Area in an Excavated Tunnel
por: Peng, Pingan, et al.
Publicado: (2020) -
Microseismic Precursors of Coal Mine Water Inrush Characterized by Different Waveforms Manifest as Dry to Wet Fracturing
por: Yu, Rui, et al.
Publicado: (2022)