Cargando…

Research on Total Ionizing Dose Effect and Reinforcement of SOI-TFET

Since the oxide/source overlap structure can improve the tunneling probability and on-state current of tunneling field effect transistor (TFET) devices, and the silicon-on-insulator (SOI) structure has the effect of resisting the single event effect, SOI-TFET with the oxide/source overlap structure...

Descripción completa

Detalles Bibliográficos
Autores principales: Chong, Chen, Liu, Hongxia, Wang, Shulong, Wu, Xiaocong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539033/
https://www.ncbi.nlm.nih.gov/pubmed/34683283
http://dx.doi.org/10.3390/mi12101232
Descripción
Sumario:Since the oxide/source overlap structure can improve the tunneling probability and on-state current of tunneling field effect transistor (TFET) devices, and the silicon-on-insulator (SOI) structure has the effect of resisting the single event effect, SOI-TFET with the oxide/source overlap structure is a device with development potential. The total ionizing dose (TID) effect on SOI-TFET was studied by discussing the switching ratio, band–band tunneling rate, threshold voltage, sub-threshold swing and bipolar effect of the device under different doses of irradiation. At the same time, simulations prove that selecting the proper thickness of the buried oxide (BOX) layer can effectively reduce the influence of the TID effect. This provides a way of direction and method for research on the irradiation effects on the device in the future.