Cargando…
Rooibos Flavonoids, Aspalathin, Isoorientin, and Orientin Ameliorate Antimycin A-Induced Mitochondrial Dysfunction by Improving Mitochondrial Bioenergetics in Cultured Skeletal Muscle Cells
The current study investigated the physiological effects of flavonoids found in daily consumed rooibos tea, aspalathin, isoorientin, and orientin on improving processes involved in mitochondrial function in C2C12 myotubes. To achieve this, C2C12 myotubes were exposed to a mitochondrial channel block...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539189/ https://www.ncbi.nlm.nih.gov/pubmed/34684871 http://dx.doi.org/10.3390/molecules26206289 |
Sumario: | The current study investigated the physiological effects of flavonoids found in daily consumed rooibos tea, aspalathin, isoorientin, and orientin on improving processes involved in mitochondrial function in C2C12 myotubes. To achieve this, C2C12 myotubes were exposed to a mitochondrial channel blocker, antimycin A (6.25 µM), for 12 h to induce mitochondrial dysfunction. Thereafter, cells were treated with aspalathin, isoorientin, and orientin (10 µM) for 4 h, while metformin (1 µM) and insulin (1 µM) were used as comparators. Relevant bioassays and real-time PCR were conducted to assess the impact of treatment compounds on some markers of mitochondrial function. Our results showed that antimycin A induced alterations in the mitochondrial respiration process and mRNA levels of genes involved in energy production. In fact, aspalathin, isoorientin, and orientin reversed such effects leading to the reduced production of intracellular reactive oxygen species. These flavonoids further enhanced the expression of genes involved in mitochondrial function, such as Ucp 2, Complex 1/3, Sirt 1, Nrf 1, and Tfam. Overall, the current study showed that dietary flavonoids, aspalathin, isoorientin, and orientin, have the potential to be as effective as established pharmacological drugs such as metformin and insulin in protecting against mitochondrial dysfunction in a preclinical setting; however, such information should be confirmed in well-established in vivo disease models. |
---|