Cargando…

Influence of Degradation Product Thickness on the Elastic Stiffness of Porous Absorbable Scaffolds Made from an Bioabsorbable Zn–Mg Alloy

For orthopaedic applications, additive manufactured (AM) porous scaffolds made of absorbable metals such as magnesium, zinc or iron are of particular interest. They do not only offer the potential to design and fabricate bio-mimetic or rather bone-equivalent mechanical properties, they also do not n...

Descripción completa

Detalles Bibliográficos
Autores principales: Bühring, Jannik, Voshage, Maximilian, Schleifenbaum, Johannes Henrich, Jahr, Holger, Schröder, Kai-Uwe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539330/
https://www.ncbi.nlm.nih.gov/pubmed/34683618
http://dx.doi.org/10.3390/ma14206027
Descripción
Sumario:For orthopaedic applications, additive manufactured (AM) porous scaffolds made of absorbable metals such as magnesium, zinc or iron are of particular interest. They do not only offer the potential to design and fabricate bio-mimetic or rather bone-equivalent mechanical properties, they also do not need to be removed in further surgery. Located in a physiological environment, scaffolds made of absorbable metals show a decreasing Young’s modulus over time, due to product dissolution. For magnesium-based scaffolds during the first days an increase of the smeared Young’s modulus can be observed, which is mainly attributed to a forming substrate layer of degradation products on the strut surfaces. In this study, the influence of degradation products on the stiffness properties of metallic scaffolds is investigated. For this, analytical calculations and finite-element simulations are performed to study the influence of the substrate layer thickness and Young’s modulus for single struts and for a new scaffold geometry with adapted polar cubic face-centered unit cells with vertical struts (f2cc,z). The finite-element model is further validated by compression tests on AM scaffolds made from Zn1Mg (1 wt% Mg). The results show that even low thicknesses and Young’s moduli of the substrate layer significantly increases the smeared Young’s modulus under axial compression.