Cargando…
Influence of Degradation Product Thickness on the Elastic Stiffness of Porous Absorbable Scaffolds Made from an Bioabsorbable Zn–Mg Alloy
For orthopaedic applications, additive manufactured (AM) porous scaffolds made of absorbable metals such as magnesium, zinc or iron are of particular interest. They do not only offer the potential to design and fabricate bio-mimetic or rather bone-equivalent mechanical properties, they also do not n...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539330/ https://www.ncbi.nlm.nih.gov/pubmed/34683618 http://dx.doi.org/10.3390/ma14206027 |
_version_ | 1784588720997924864 |
---|---|
author | Bühring, Jannik Voshage, Maximilian Schleifenbaum, Johannes Henrich Jahr, Holger Schröder, Kai-Uwe |
author_facet | Bühring, Jannik Voshage, Maximilian Schleifenbaum, Johannes Henrich Jahr, Holger Schröder, Kai-Uwe |
author_sort | Bühring, Jannik |
collection | PubMed |
description | For orthopaedic applications, additive manufactured (AM) porous scaffolds made of absorbable metals such as magnesium, zinc or iron are of particular interest. They do not only offer the potential to design and fabricate bio-mimetic or rather bone-equivalent mechanical properties, they also do not need to be removed in further surgery. Located in a physiological environment, scaffolds made of absorbable metals show a decreasing Young’s modulus over time, due to product dissolution. For magnesium-based scaffolds during the first days an increase of the smeared Young’s modulus can be observed, which is mainly attributed to a forming substrate layer of degradation products on the strut surfaces. In this study, the influence of degradation products on the stiffness properties of metallic scaffolds is investigated. For this, analytical calculations and finite-element simulations are performed to study the influence of the substrate layer thickness and Young’s modulus for single struts and for a new scaffold geometry with adapted polar cubic face-centered unit cells with vertical struts (f2cc,z). The finite-element model is further validated by compression tests on AM scaffolds made from Zn1Mg (1 wt% Mg). The results show that even low thicknesses and Young’s moduli of the substrate layer significantly increases the smeared Young’s modulus under axial compression. |
format | Online Article Text |
id | pubmed-8539330 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85393302021-10-24 Influence of Degradation Product Thickness on the Elastic Stiffness of Porous Absorbable Scaffolds Made from an Bioabsorbable Zn–Mg Alloy Bühring, Jannik Voshage, Maximilian Schleifenbaum, Johannes Henrich Jahr, Holger Schröder, Kai-Uwe Materials (Basel) Article For orthopaedic applications, additive manufactured (AM) porous scaffolds made of absorbable metals such as magnesium, zinc or iron are of particular interest. They do not only offer the potential to design and fabricate bio-mimetic or rather bone-equivalent mechanical properties, they also do not need to be removed in further surgery. Located in a physiological environment, scaffolds made of absorbable metals show a decreasing Young’s modulus over time, due to product dissolution. For magnesium-based scaffolds during the first days an increase of the smeared Young’s modulus can be observed, which is mainly attributed to a forming substrate layer of degradation products on the strut surfaces. In this study, the influence of degradation products on the stiffness properties of metallic scaffolds is investigated. For this, analytical calculations and finite-element simulations are performed to study the influence of the substrate layer thickness and Young’s modulus for single struts and for a new scaffold geometry with adapted polar cubic face-centered unit cells with vertical struts (f2cc,z). The finite-element model is further validated by compression tests on AM scaffolds made from Zn1Mg (1 wt% Mg). The results show that even low thicknesses and Young’s moduli of the substrate layer significantly increases the smeared Young’s modulus under axial compression. MDPI 2021-10-13 /pmc/articles/PMC8539330/ /pubmed/34683618 http://dx.doi.org/10.3390/ma14206027 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bühring, Jannik Voshage, Maximilian Schleifenbaum, Johannes Henrich Jahr, Holger Schröder, Kai-Uwe Influence of Degradation Product Thickness on the Elastic Stiffness of Porous Absorbable Scaffolds Made from an Bioabsorbable Zn–Mg Alloy |
title | Influence of Degradation Product Thickness on the Elastic Stiffness of Porous Absorbable Scaffolds Made from an Bioabsorbable Zn–Mg Alloy |
title_full | Influence of Degradation Product Thickness on the Elastic Stiffness of Porous Absorbable Scaffolds Made from an Bioabsorbable Zn–Mg Alloy |
title_fullStr | Influence of Degradation Product Thickness on the Elastic Stiffness of Porous Absorbable Scaffolds Made from an Bioabsorbable Zn–Mg Alloy |
title_full_unstemmed | Influence of Degradation Product Thickness on the Elastic Stiffness of Porous Absorbable Scaffolds Made from an Bioabsorbable Zn–Mg Alloy |
title_short | Influence of Degradation Product Thickness on the Elastic Stiffness of Porous Absorbable Scaffolds Made from an Bioabsorbable Zn–Mg Alloy |
title_sort | influence of degradation product thickness on the elastic stiffness of porous absorbable scaffolds made from an bioabsorbable zn–mg alloy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539330/ https://www.ncbi.nlm.nih.gov/pubmed/34683618 http://dx.doi.org/10.3390/ma14206027 |
work_keys_str_mv | AT buhringjannik influenceofdegradationproductthicknessontheelasticstiffnessofporousabsorbablescaffoldsmadefromanbioabsorbableznmgalloy AT voshagemaximilian influenceofdegradationproductthicknessontheelasticstiffnessofporousabsorbablescaffoldsmadefromanbioabsorbableznmgalloy AT schleifenbaumjohanneshenrich influenceofdegradationproductthicknessontheelasticstiffnessofporousabsorbablescaffoldsmadefromanbioabsorbableznmgalloy AT jahrholger influenceofdegradationproductthicknessontheelasticstiffnessofporousabsorbablescaffoldsmadefromanbioabsorbableznmgalloy AT schroderkaiuwe influenceofdegradationproductthicknessontheelasticstiffnessofporousabsorbablescaffoldsmadefromanbioabsorbableznmgalloy |