Cargando…
Statistically Representative Metrology of Nanoparticles via Unsupervised Machine Learning of TEM Images
The morphology of nanoparticles governs their properties for a range of important applications. Thus, the ability to statistically correlate this key particle performance parameter is paramount in achieving accurate control of nanoparticle properties. Among several effective techniques for morpholog...
Autores principales: | Wen, Haotian, Luna-Romera, José María, Riquelme, José C., Dwyer, Christian, Chang, Shery L. Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539342/ https://www.ncbi.nlm.nih.gov/pubmed/34685147 http://dx.doi.org/10.3390/nano11102706 |
Ejemplares similares
-
Metrology of convex-shaped nanoparticles via soft classification machine learning of TEM images
por: Wen, Haotian, et al.
Publicado: (2021) -
Complex
Dispersion of Detonation Nanodiamond Revealed
by Machine Learning Assisted Cryo-TEM and Coarse-Grained Molecular
Dynamics Simulations
por: Kuschnerus, Inga C., et al.
Publicado: (2023) -
Introduction to statistics in metrology
por: Crowder, Stephen, et al.
Publicado: (2020) -
Machine Learning to Reveal Nanoparticle Dynamics from
Liquid-Phase TEM Videos
por: Yao, Lehan, et al.
Publicado: (2020) -
Statistics for machine learning: build supervised, unsupervised, and reinforcement learning models using both Python and R
por: Dangeti, Pratap
Publicado: (2017)