Cargando…
Electrocardiogram Quality Assessment with a Generalized Deep Learning Model Assisted by Conditional Generative Adversarial Networks
The electrocardiogram (ECG) is widely used for cardiovascular disease diagnosis and daily health monitoring. Before ECG analysis, ECG quality screening is an essential but time-consuming and experience-dependent work for technicians. An automatic ECG quality assessment method can reduce unnecessary...
Autores principales: | Zhou, Xue, Zhu, Xin, Nakamura, Keijiro, Noro, Mahito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539388/ https://www.ncbi.nlm.nih.gov/pubmed/34685385 http://dx.doi.org/10.3390/life11101013 |
Ejemplares similares
-
Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network
por: Zhu, Fei, et al.
Publicado: (2019) -
DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine
por: Thambawita, Vajira, et al.
Publicado: (2021) -
Risk of Mortality Prediction Involving Time-Varying Covariates for Patients with Heart Failure Using Deep Learning
por: Nakamura, Keijiro, et al.
Publicado: (2022) -
Deep Learning of Cancer Stem Cell Morphology Using Conditional Generative Adversarial Networks
por: Aida, Saori, et al.
Publicado: (2020) -
Adversarial Patch Attacks on Deep-Learning-Based Face Recognition Systems Using Generative Adversarial Networks
por: Hwang, Ren-Hung, et al.
Publicado: (2023)