Cargando…

Thermogravimetric Experiment of Urea at Constant Temperatures

There are still many unsolved mysteries in the thermal decomposition process of urea. This paper studied the thermal decomposition process of urea at constant temperatures by the thermal gravimetric–mass spectrometry analysis method. The results show that there are three obvious stages of mass loss...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Neng, Qian, Feng, Xu, Xiaowei, Wang, Mingda, Teng, Qi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539392/
https://www.ncbi.nlm.nih.gov/pubmed/34683779
http://dx.doi.org/10.3390/ma14206190
Descripción
Sumario:There are still many unsolved mysteries in the thermal decomposition process of urea. This paper studied the thermal decomposition process of urea at constant temperatures by the thermal gravimetric–mass spectrometry analysis method. The results show that there are three obvious stages of mass loss during the thermal decomposition process of urea, which is closely related to the temperature. When the temperature was below 160 °C, urea decomposition almost did not occur, and molten urea evaporated slowly. When the temperature was between 180 and 200 °C, the content of biuret, one of the by-products in the thermal decomposition of urea, reached a maximum. When the temperature was higher than 200 °C, the first stage of mass loss was completed quickly, and urea and biuret rapidly broke down. When the temperature was about 240 °C, there were rarely urea and biuret in residual substance; however, the content of cyanuric acid was still rising. When the temperature was higher than 280°C, there was a second stage of mass loss. In the second stage of mass loss, when the temperature was higher than 330 °C, mass decreased rapidly, which was mainly due to the decomposition of cyanuric acid. When the temperature was higher than 380 °C, the third stage of mass loss occurred. However, when the temperature was higher than 400 °C, and after continuous heating was applied for a sufficiently long time, the residual mass was reduced to almost zero eventually.