Cargando…
Design Principles of Large Cation Incorporation in Halide Perovskites
Perovskites have stood out as excellent photoactive materials with high efficiencies and stabilities, achieved via cation mixing techniques. Overcoming challenges to the stabilization of Perovskite solar cells calls for the development of design principles of large cation incorporation in halide per...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539499/ https://www.ncbi.nlm.nih.gov/pubmed/34684765 http://dx.doi.org/10.3390/molecules26206184 |
_version_ | 1784588761795919872 |
---|---|
author | Park, Heesoo Kumar, Syam Chawla, Sanjay El-Mellouhi, Fedwa |
author_facet | Park, Heesoo Kumar, Syam Chawla, Sanjay El-Mellouhi, Fedwa |
author_sort | Park, Heesoo |
collection | PubMed |
description | Perovskites have stood out as excellent photoactive materials with high efficiencies and stabilities, achieved via cation mixing techniques. Overcoming challenges to the stabilization of Perovskite solar cells calls for the development of design principles of large cation incorporation in halide perovskite to accelerate the discovery of optimal stable compositions. Large fluorinated organic cations incorporation is an attractive method for enhancing the intrinsic stability of halide perovskites due to their high dipole moment and moisture-resistant nature. However, a fluorinated cation has a larger ionic size than its non-fluorinated counterpart, falling within the upper boundary of the mixed-cation incorporation. Here, we report on the intrinsic stability of mixed Methylammonium (MA) lead halides at different concentrations of large cation incorporation, namely, ehtylammonium (EA; [CH(3)CH(2)NH(3)](+)) and 2-fluoroethylammonium (FEA; [CH(2)FCH(2)NH(3)](+)). Density functional theory (DFT) calculations of the enthalpy of the mixing and analysis of the perovskite structural features enable us to narrow down the compositional search domain for EA and FEA cations around concentrations that preserve the perovskite structure while pointing towards the maximal stability. This work paves the way to developing design principles of a large cation mixture guided by data analysis of DFT data. Finally, we present the automated search of the minimum enthalpy of mixing by implementing Bayesian optimization over the compositional search domain. We introduce and validate an automated workflow designed to accelerate the compositional search, enabling researchers to cut down the computational expense and bias to search for optimal compositions. |
format | Online Article Text |
id | pubmed-8539499 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85394992021-10-24 Design Principles of Large Cation Incorporation in Halide Perovskites Park, Heesoo Kumar, Syam Chawla, Sanjay El-Mellouhi, Fedwa Molecules Article Perovskites have stood out as excellent photoactive materials with high efficiencies and stabilities, achieved via cation mixing techniques. Overcoming challenges to the stabilization of Perovskite solar cells calls for the development of design principles of large cation incorporation in halide perovskite to accelerate the discovery of optimal stable compositions. Large fluorinated organic cations incorporation is an attractive method for enhancing the intrinsic stability of halide perovskites due to their high dipole moment and moisture-resistant nature. However, a fluorinated cation has a larger ionic size than its non-fluorinated counterpart, falling within the upper boundary of the mixed-cation incorporation. Here, we report on the intrinsic stability of mixed Methylammonium (MA) lead halides at different concentrations of large cation incorporation, namely, ehtylammonium (EA; [CH(3)CH(2)NH(3)](+)) and 2-fluoroethylammonium (FEA; [CH(2)FCH(2)NH(3)](+)). Density functional theory (DFT) calculations of the enthalpy of the mixing and analysis of the perovskite structural features enable us to narrow down the compositional search domain for EA and FEA cations around concentrations that preserve the perovskite structure while pointing towards the maximal stability. This work paves the way to developing design principles of a large cation mixture guided by data analysis of DFT data. Finally, we present the automated search of the minimum enthalpy of mixing by implementing Bayesian optimization over the compositional search domain. We introduce and validate an automated workflow designed to accelerate the compositional search, enabling researchers to cut down the computational expense and bias to search for optimal compositions. MDPI 2021-10-13 /pmc/articles/PMC8539499/ /pubmed/34684765 http://dx.doi.org/10.3390/molecules26206184 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Park, Heesoo Kumar, Syam Chawla, Sanjay El-Mellouhi, Fedwa Design Principles of Large Cation Incorporation in Halide Perovskites |
title | Design Principles of Large Cation Incorporation in Halide Perovskites |
title_full | Design Principles of Large Cation Incorporation in Halide Perovskites |
title_fullStr | Design Principles of Large Cation Incorporation in Halide Perovskites |
title_full_unstemmed | Design Principles of Large Cation Incorporation in Halide Perovskites |
title_short | Design Principles of Large Cation Incorporation in Halide Perovskites |
title_sort | design principles of large cation incorporation in halide perovskites |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539499/ https://www.ncbi.nlm.nih.gov/pubmed/34684765 http://dx.doi.org/10.3390/molecules26206184 |
work_keys_str_mv | AT parkheesoo designprinciplesoflargecationincorporationinhalideperovskites AT kumarsyam designprinciplesoflargecationincorporationinhalideperovskites AT chawlasanjay designprinciplesoflargecationincorporationinhalideperovskites AT elmellouhifedwa designprinciplesoflargecationincorporationinhalideperovskites |