Cargando…
Super-Resolution Network with Information Distillation and Multi-Scale Attention for Medical CT Image
The CT image is an important reference for clinical diagnosis. However, due to the external influence and equipment limitation in the imaging, the CT image often has problems such as blurring, a lack of detail and unclear edges, which affect the subsequent diagnosis. In order to obtain high-quality...
Autores principales: | Zhao, Tianliu, Hu, Lei, Zhang, Yongmei, Fang, Jianying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539557/ https://www.ncbi.nlm.nih.gov/pubmed/34696083 http://dx.doi.org/10.3390/s21206870 |
Ejemplares similares
-
Attention Network with Information Distillation for Super-Resolution
por: Zang, Huaijuan, et al.
Publicado: (2022) -
Double paths network with residual information distillation for improving lung CT image super resolution
por: Chen, Yihan, et al.
Publicado: (2022) -
Super resolution reconstruction of CT images based on multi-scale attention mechanism
por: Yin, Jian, et al.
Publicado: (2023) -
Knowledge Fusion Distillation: Improving Distillation with Multi-scale Attention Mechanisms
por: Li, Linfeng, et al.
Publicado: (2023) -
Super-Resolution Swin Transformer and Attention Network for Medical CT Imaging
por: Hu, Jianhua, et al.
Publicado: (2022)