Cargando…

Silencing of Aquaporin Homologue Accumulates Uric Acid and Decreases the Lifespan of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae)

SIMPLE SUMMARY: The use of RNA interference has become increasingly popular for investigating insect physiology, testing the functionality of insect genes and as a potential control strategy. Hemiptera include many vectors for destructive plant diseases. A major characteristic of the order of Hemipt...

Descripción completa

Detalles Bibliográficos
Autores principales: Santos-Ortega, Yulica, Killiny, Nabil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539622/
https://www.ncbi.nlm.nih.gov/pubmed/34680700
http://dx.doi.org/10.3390/insects12100931
_version_ 1784588791605886976
author Santos-Ortega, Yulica
Killiny, Nabil
author_facet Santos-Ortega, Yulica
Killiny, Nabil
author_sort Santos-Ortega, Yulica
collection PubMed
description SIMPLE SUMMARY: The use of RNA interference has become increasingly popular for investigating insect physiology, testing the functionality of insect genes and as a potential control strategy. Hemiptera include many vectors for destructive plant diseases. A major characteristic of the order of Hemiptera is feeding on the phloem sap of their plant hosts. Phloem feeders face high osmotic stress between the gut lumen and hemolymph due to the high level of sucrose in phloem sap. Targeting the osmoregulation mechanisms in Diaphorina citri Kuwayama, which transmits ‘Candidatus Liberibacter asiaticus’, the putative causal agent of Huanglongbing in citrus may lead to an effective control strategy. Herein we downregulate the expression of aquaporin, representing a major mechanism of osmoregulation, by RNA interference. ABSTRACT: The Asian citrus psyllid, Diaphorina citri Kuwayama is devastating the citrus industry worldwide. It transmits ‘Candidatus Liberibacter asiaticus’, the pathogen of Huanglongbing in citrus. RNA interference is an excellent tool for functional genomics and for screening target genes for pest control. Herein, we silenced the aquaporin (AQP) gene (DcAQP) homologue in D. citri to study its functionality and whether it could be a good target for a control strategy. AQP is an integral membrane channel protein that aids in the rapid flux of water and other small solutes that move across the lipid membrane. In Hemiptera, it is well established that AQP plays important roles in adjusting to physiological challenges including (1) regulating osmotic stress between the gut lumen and hemolymph after imbibing large quantities of a low nitrogen, sugar-rich liquid diet; (2) avoiding or preventing dehydration and desiccation; and (3) surviving at elevated temperatures. The dsRNA-DcAQP was applied twice to nymphs of the 4th and 5th instars through a soaking technique. Silencing AQP caused a significant increase in nymph mortality. Emerged adults showed malformations and a shorter lifespan. Silencing DcAQP provoked alterations in some metabolites and increased the uric acid content in emerged adults. DcAQP could be a useful target to control D. citri.
format Online
Article
Text
id pubmed-8539622
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85396222021-10-24 Silencing of Aquaporin Homologue Accumulates Uric Acid and Decreases the Lifespan of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae) Santos-Ortega, Yulica Killiny, Nabil Insects Article SIMPLE SUMMARY: The use of RNA interference has become increasingly popular for investigating insect physiology, testing the functionality of insect genes and as a potential control strategy. Hemiptera include many vectors for destructive plant diseases. A major characteristic of the order of Hemiptera is feeding on the phloem sap of their plant hosts. Phloem feeders face high osmotic stress between the gut lumen and hemolymph due to the high level of sucrose in phloem sap. Targeting the osmoregulation mechanisms in Diaphorina citri Kuwayama, which transmits ‘Candidatus Liberibacter asiaticus’, the putative causal agent of Huanglongbing in citrus may lead to an effective control strategy. Herein we downregulate the expression of aquaporin, representing a major mechanism of osmoregulation, by RNA interference. ABSTRACT: The Asian citrus psyllid, Diaphorina citri Kuwayama is devastating the citrus industry worldwide. It transmits ‘Candidatus Liberibacter asiaticus’, the pathogen of Huanglongbing in citrus. RNA interference is an excellent tool for functional genomics and for screening target genes for pest control. Herein, we silenced the aquaporin (AQP) gene (DcAQP) homologue in D. citri to study its functionality and whether it could be a good target for a control strategy. AQP is an integral membrane channel protein that aids in the rapid flux of water and other small solutes that move across the lipid membrane. In Hemiptera, it is well established that AQP plays important roles in adjusting to physiological challenges including (1) regulating osmotic stress between the gut lumen and hemolymph after imbibing large quantities of a low nitrogen, sugar-rich liquid diet; (2) avoiding or preventing dehydration and desiccation; and (3) surviving at elevated temperatures. The dsRNA-DcAQP was applied twice to nymphs of the 4th and 5th instars through a soaking technique. Silencing AQP caused a significant increase in nymph mortality. Emerged adults showed malformations and a shorter lifespan. Silencing DcAQP provoked alterations in some metabolites and increased the uric acid content in emerged adults. DcAQP could be a useful target to control D. citri. MDPI 2021-10-13 /pmc/articles/PMC8539622/ /pubmed/34680700 http://dx.doi.org/10.3390/insects12100931 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Santos-Ortega, Yulica
Killiny, Nabil
Silencing of Aquaporin Homologue Accumulates Uric Acid and Decreases the Lifespan of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae)
title Silencing of Aquaporin Homologue Accumulates Uric Acid and Decreases the Lifespan of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae)
title_full Silencing of Aquaporin Homologue Accumulates Uric Acid and Decreases the Lifespan of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae)
title_fullStr Silencing of Aquaporin Homologue Accumulates Uric Acid and Decreases the Lifespan of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae)
title_full_unstemmed Silencing of Aquaporin Homologue Accumulates Uric Acid and Decreases the Lifespan of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae)
title_short Silencing of Aquaporin Homologue Accumulates Uric Acid and Decreases the Lifespan of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae)
title_sort silencing of aquaporin homologue accumulates uric acid and decreases the lifespan of the asian citrus psyllid, diaphorina citri (hemiptera: liviidae)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539622/
https://www.ncbi.nlm.nih.gov/pubmed/34680700
http://dx.doi.org/10.3390/insects12100931
work_keys_str_mv AT santosortegayulica silencingofaquaporinhomologueaccumulatesuricacidanddecreasesthelifespanoftheasiancitruspsylliddiaphorinacitrihemipteraliviidae
AT killinynabil silencingofaquaporinhomologueaccumulatesuricacidanddecreasesthelifespanoftheasiancitruspsylliddiaphorinacitrihemipteraliviidae