Cargando…
Graphene-Based Electrode Materials for Neural Activity Detection
The neural electrode technique is a powerful tool for monitoring and regulating neural activity, which has a wide range of applications in basic neuroscience and the treatment of neurological diseases. Constructing a high-performance electrode–nerve interface is required for the long-term stable det...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539724/ https://www.ncbi.nlm.nih.gov/pubmed/34683762 http://dx.doi.org/10.3390/ma14206170 |
Sumario: | The neural electrode technique is a powerful tool for monitoring and regulating neural activity, which has a wide range of applications in basic neuroscience and the treatment of neurological diseases. Constructing a high-performance electrode–nerve interface is required for the long-term stable detection of neural signals by electrodes. However, conventional neural electrodes are mainly fabricated from rigid materials that do not match the mechanical properties of soft neural tissues, thus limiting the high-quality recording of neuroelectric signals. Meanwhile, graphene-based nanomaterials can form stable electrode–nerve interfaces due to their high conductivity, excellent flexibility, and biocompatibility. In this literature review, we describe various graphene-based electrodes and their potential application in neural activity detection. We also discuss the biological safety of graphene neural electrodes, related challenges, and their prospects. |
---|