Cargando…
Predicting subcellular location of protein with evolution information and sequence-based deep learning
BACKGROUND: Protein subcellular localization prediction plays an important role in biology research. Since traditional methods are laborious and time-consuming, many machine learning-based prediction methods have been proposed. However, most of the proposed methods ignore the evolution information o...
Autores principales: | Liao, Zhijun, Pan, Gaofeng, Sun, Chao, Tang, Jijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539821/ https://www.ncbi.nlm.nih.gov/pubmed/34686152 http://dx.doi.org/10.1186/s12859-021-04404-0 |
Ejemplares similares
-
A Novel Peptide Binding Prediction Approach for HLA-DR Molecule Based on Sequence and Structural Information
por: Li, Zhao, et al.
Publicado: (2016) -
Multi-class subcellular location prediction for bacterial proteins
por: Taylor, Paul D, et al.
Publicado: (2006) -
Location, location, location: subcellular protein partitioning in proteostasis and aging
por: Kumar, Anita V., et al.
Publicado: (2021) -
Predicting Essential Proteins Based on Integration of Local Fuzzy Fractal Dimension and Subcellular Location Information
por: Shen, Li, et al.
Publicado: (2022) -
Prediction of LncRNA Subcellular Localization with Deep Learning from Sequence Features
por: Gudenas, Brian L., et al.
Publicado: (2018)