Cargando…

Rapid Removal of Mercury from Water by Novel MOF/PP Hybrid Membrane

Mercury is one of the most toxic heavy metals that can cause terrible disease for human beings. Among different absorption materials, MOF (metal–organic framework) materials show potential as very attractive materials for the rapid removal of mercury. However, the instability and difficulty for rege...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Jian, Li, Ziming, Deng, Ziqi, Liu, Meihua, Wei, Wei, Zheng, Chunbai, Zhang, Yifan, Chen, Shusen, Deng, Pengyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539959/
https://www.ncbi.nlm.nih.gov/pubmed/34684928
http://dx.doi.org/10.3390/nano11102488
Descripción
Sumario:Mercury is one of the most toxic heavy metals that can cause terrible disease for human beings. Among different absorption materials, MOF (metal–organic framework) materials show potential as very attractive materials for the rapid removal of mercury. However, the instability and difficulty for regeneration of MOF crystals limit their applications. Here, a continuous sulfur-modified MOF (UiO-66-NHC(S)NHMe) layer was synthesized in situ on polymeric membranes (PP non-woven fabrics) by post-synthetic modification and used for rapid mercury removal. The MOF-based membrane (US-N) showed high selectivity for mercury in different aqueous systems, which is better than sulfur-modified MOF powders. A thinner MOF layer on US-N showed a much better mercury ion removal performance. US-N with a 59.3 nm MOF layer could remove more than 85% of mercury in 20 min from an aqueous solution. In addition, the US-N can simply regenerate several times for mercury removal and maintain the initial performance (removal ratio > 98%), exhibiting excellent durability and stability. This work promotes the application of MOF materials in the rapid removal of hazardous heavy metal ions from practical environments.