Cargando…
PbS Quantum Dots Saturable Absorber for Dual-Wavelength Solitons Generation
PbS quantum dots (QDs), a representative zero-dimensional material, have attracted great interest due to their unique optical, electronic, and chemical characteristics. Compared to one- and two-dimensional materials, PbS QDs possess strong absorption and an adjustable bandgap, which are particularly...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539987/ https://www.ncbi.nlm.nih.gov/pubmed/34685000 http://dx.doi.org/10.3390/nano11102561 |
Sumario: | PbS quantum dots (QDs), a representative zero-dimensional material, have attracted great interest due to their unique optical, electronic, and chemical characteristics. Compared to one- and two-dimensional materials, PbS QDs possess strong absorption and an adjustable bandgap, which are particularly fascinating in near-infrared applications. Here, fiber-based PbS QDs as a saturable absorber (SA) are studied for dual-wavelength ultrafast pulses generation for the first time to our knowledge. By introducing PbS QDs SA into an erbium-doped fiber laser, the laser can simultaneously generate dual-wavelength conventional solitons with central wavelengths of 1532 and 1559 nm and 3 dB bandwidths of 2.8 and 2.5 nm, respectively. The results show that PbS QDs as broadband SAs have potential application prospects for the generation of ultrafast lasers. |
---|