Cargando…
A Reference-Sampling Based Calibration-Free Fractional-N PLL with a PI-Linked Sampling Clock Generator
Sampling-based PLLs have become a new research trend due to the possibility of removing the frequency divider (FDIV) from the feedback path, where the FDIV increases the contribution of in-band noise by the factor of dividing ratio square (N(2)). Between two possible sampling methods, sub-sampling a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540025/ https://www.ncbi.nlm.nih.gov/pubmed/34696037 http://dx.doi.org/10.3390/s21206824 |
Sumario: | Sampling-based PLLs have become a new research trend due to the possibility of removing the frequency divider (FDIV) from the feedback path, where the FDIV increases the contribution of in-band noise by the factor of dividing ratio square (N(2)). Between two possible sampling methods, sub-sampling and reference-sampling, the latter provides a relatively wide locking range, as the slower input reference signal is sampled with the faster VCO output signal. However, removal of FDIV makes the PLL not feasible to implement fractional-N operation based on varying divider ratios through random sequence generators, such as a Delta-Sigma-Modulator (DSM). To address the above design challenges, we propose a reference-sampling-based calibration-free fractional-N PLL (RSFPLL) with a phase-interpolator-linked sampling clock generator (PSCG). The proposed RSFPLL achieves fractional-N operations through phase-interpolator (PI)-based multi-phase generation instead of a typical frequency divider or digital-to-time converter (DTC). In addition, to alleviate the power burden arising from VCO-rated sampling, a flexible mask window generation method has been used that only passes a few sampling clocks near the point of interest. The prototype PLL system is designed with a 65 nm CMOS process with a chip size of 0.42 mm(2). It achieves 322 fs rms jitter, −240.7 dB figure-of-merit (FoM), and −44.06 dBc fractional spurs with 8.17 mW power consumption. |
---|