Cargando…

Characterization, Antimicrobial and Anticancer Properties of Palladium Nanoparticles Biosynthesized Optimally Using Saudi Propolis

Due to their unique physicochemical characteristics, palladium nanoparticles (Pd-NPs) have shown tremendous promise in biological applications. The biosynthesis of Pd-NPs employing Saudi propolis has been designed to be environmental, fast, controlled, and cost-effective. The formation and stability...

Descripción completa

Detalles Bibliográficos
Autores principales: Al-Fakeh, Maged S., Osman, Samir Osman Mohammed, Gassoumi, Malek, Rabhi, Mokded, Omer, Mohamed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540078/
https://www.ncbi.nlm.nih.gov/pubmed/34685107
http://dx.doi.org/10.3390/nano11102666
Descripción
Sumario:Due to their unique physicochemical characteristics, palladium nanoparticles (Pd-NPs) have shown tremendous promise in biological applications. The biosynthesis of Pd-NPs employing Saudi propolis has been designed to be environmental, fast, controlled, and cost-effective. The formation and stability of biosynthesized Pd-NPs by Saudi propolis extract were proved by ultraviolet–visible spectrophotometry (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), and Zeta potential analysis. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) findings show that the average particle size of Pd-NPs is between 3.14 and 4.62 nm, which is in quantum scale. The Saudi propolis enhanced the antimicrobial activity against B. subtilis, S. aureus, E. coli, K. pneumoniae, and C. albicans. Pd-NPs show effective anticancer activity against ductal carcinoma (MCF-7) with IC50 of 104.79 µg/mL.