Cargando…
A High-Precision Implementation of the Sigmoid Activation Function for Computing-in-Memory Architecture
Computing-In-Memory (CIM), based on non-von Neumann architecture, has lately received significant attention due to its lower overhead in delay and higher energy efficiency in convolutional and fully-connected neural network computing. Growing works have given the priority to researching the array of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540118/ https://www.ncbi.nlm.nih.gov/pubmed/34683234 http://dx.doi.org/10.3390/mi12101183 |
Sumario: | Computing-In-Memory (CIM), based on non-von Neumann architecture, has lately received significant attention due to its lower overhead in delay and higher energy efficiency in convolutional and fully-connected neural network computing. Growing works have given the priority to researching the array of memory and peripheral circuits to achieve multiply-and-accumulate (MAC) operation, but not enough attention has been paid to the high-precision hardware implementation of non-linear layers up to now, which still causes time overhead and power consumption. Sigmoid is a widely used non-linear activation function and most of its studies provided an approximation of the function expression rather than totally matched, inevitably leading to considerable error. To address this issue, we propose a high-precision circuit implementation of the sigmoid, matching the expression exactly for the first time. The simulation results with the SMIC 40 nm process suggest that the proposed circuit implemented high-precision sigmoid perfectly achieves the properties of the ideal sigmoid, showing the maximum error and average error between the proposed simulated sigmoid and ideal sigmoid is 2.74% and 0.21%, respectively. In addition, a multi-layer convolutional neural network based on CIM architecture employing the simulated high-precision sigmoid activation function verifies the similar recognition accuracy on the test database of handwritten digits compared to utilize the ideal sigmoid in software, with online training achieving 97.06% and with offline training achieving 97.74%. |
---|